Sammanfattning
Titanium dioxide (TiO 2) is a commonly used electron selective layer in thin-film solar cells. The energy levels of TiO 2 align well with those of most light-absorbing materials and facilitate extracting electrons while blocking the extraction of holes. In a device, this separates charge carriers and reduces recombination. In this study, we have evaluated the hole-blocking behavior of TiO 2 compact layers using charge extraction by linearly increasing voltage in a metal-insulator-semiconductor structure (MIS-CELIV). This hole-blocking property was characterized as surface recombination velocity ( S R) for holes at the interface between a semiconducting polymer and TiO 2 layer. TiO 2 layers of different thicknesses were prepared by sol-gel dip coating on two transparent conductive oxide substrates with different roughnesses. Surface coverage and film quality on both substrates were characterized using X-ray photoelectron spectroscopy and atomic force microscopy, along with its conductive imaging mode. Thicker TiO 2 coatings provided better surface coverage, leading to reduced S R, unless the layers were otherwise defective. We found S R to be a more sensitive indicator of the overall film quality, as varying S R values were still observed among the films that looked similar in their characteristics via other methods.
Originalspråk | Engelska |
---|---|
Sidor (från-till) | 11688-11695 |
Antal sidor | 8 |
Tidskrift | ACS Omega |
Volym | 7 |
Nummer | 14 |
DOI | |
Status | Publicerad - 12 apr. 2022 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Fingeravtryck
Fördjupa i forskningsämnen för ”Role of Surface Coverage and Film Quality of the TiO2 Electron Selective Layer for Optimal Hole-Blocking Properties”. Tillsammans bildar de ett unikt fingeravtryck.Utrustning
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Fakulteten för naturvetenskaper och teknikUtrustning/facilitet: Facilitet