Long-term electrical characteristics of a poly-3-hexylthiophene water-gated thin-film transistor

Axel Luukkonen, Amit Tewari, Kim Björkström, Amir Mohammad Ghafari, Eleonora Macchia, Fabrizio Torricelli, Luisa Torsi, Ronald Österbacka

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
22 Downloads (Pure)

Abstract

Organic water-gated thin-film transistors (WG-TFTs) are of great interest in developing low-cost and high-performance biosensors. The device's sensitivity to changes in measurement conditions can impair long-term operation, and care must be taken to ensure that the WG-TFT sensor response is due to an actual biorecognition event occurring on the sensing electrode. This work aims to clarify the long-term stability of a poly-3-hexylthiophene (P3HT) WG-TFT operated intermittently over two months during 5750 measurement cycles. We have evaluated the device figures of merit (FOM), such as threshold voltage, mobility, and trap density, during the whole measurement period. Short-term changes in the FOM are mainly attributed to work function changes on the gate electrode, whereas long-term changes are consistent with an increase in the semiconductor trap density. The shift in threshold voltage and decrease in mobility are found to be linear as a function of measurement cycles and caused by electrical stress, with time immersed in water having a negligible effect on the device. The trap density-of-states estimated using the subthreshold slope is similar to earlier reported values for P3HT OFETs and exhibits a gradual increase during device use and a partial recovery after rest, indicating the formation of shorter- and longer-lived traps.

Original languageEnglish
Article number106844
Number of pages6
JournalOrganic Electronics
Volume120
DOIs
Publication statusPublished - Sept 2023
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Long-term electrical characteristics of a poly-3-hexylthiophene water-gated thin-film transistor'. Together they form a unique fingerprint.

Cite this