Projects per year
Abstract
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Original language | English |
---|---|
Article number | 2308141 |
Journal | Advanced Science |
Volume | 11 |
Issue number | 27 |
DOIs | |
Publication status | Published - 17 Jul 2024 |
MoE publication type | A1 Journal article-refereed |
Keywords
- bioelectronic transistors
- liquid biopsy
- multivariate data processing
- SIMOA-single-molecule-array-
- SiMoT-single-molecule-with-a-large-transistor
- single-molecule biosensors
Fingerprint
Dive into the research topics of 'Analysis of Clinical Samples of Pancreatic Cyst's Lesions with A Multi-Analyte Bioelectronic Simot Array Benchmarked Against Ultrasensitive Chemiluminescent Immunoassay'. Together they form a unique fingerprint.Projects
- 2 Finished
-
BACE: Center of Excellence in Bioelectronic Activation of Cell Functions
Österbacka, R. (Principal Investigator), Sjöqvist, M. (Co-Principal Investigator), Sahlgren, C. (Co-Principal Investigator), Torsi, L. (Co-Principal Investigator), Lindfelt, M. (Co-Principal Investigator), Hellsten, L. (Co-Investigator), Tewari, A. (Co-Investigator), Luukkonen, A. (Co-Investigator), Martinez Klimova, E. (Co-Investigator), Schmit, A. (Co-Investigator), Eklund, A. (Co-Investigator) & Gounani, Z. (Co-Investigator)
01/03/19 → 31/12/23
Project: Foundation
-
SIMBIT: Single molecule bio-electronic smart system array for clinical testing
Österbacka, R. (Principal Investigator), Björkström, K. (Co-Investigator), Tewari, A. (Co-Investigator) & Macchia, E. (Co-Investigator)
01/01/19 → 31/12/22
Project: EU