Global optimization of signomial programming problems

    Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskaplig

    Sammanfattning

    In this presentation, an overview of a signomial global optimization algorithm is given. As the name indicates, the algorithm can be used to solve mixed integer nonlinear programming problems containing signomial functions to global optimality. The method employs singlevariable power and exponential transformations for convexifying the nonconvex signomial functions termwise. By approximating the transformations using piecewise linear functions, piecewise convex underestimators for the nonconvex signomial functions as well as a relaxed convex problem can be obtained. In the algorithm, the approximations resulting from the piecewise linear functions are subsequentially improved resulting in a set of subproblems whose optimal solution converges to that of the original nonconvex problem. Finally, some recent theoretical results regarding the underestimation properties of the convexified signomial terms obtained using different transformations are also given
    OriginalspråkOdefinierat/okänt
    Titel på gästpublikationProceedings of the European Workshop on Mixed Integer Nonlinear Programming
    RedaktörerPierre Bonami, Leo Liberti, Andrew J. Miller, Annick Sartenaer
    FörlagCIRM
    Sidor89–92
    StatusPublicerad - 2010
    MoE-publikationstypB3 Ej refererad artikel i konferenshandlingar
    EvenemangEuropean Workshop on Mixed Integer Nonlinear Programming - European Workshop on Mixed Integer Nonlinear Programming
    Varaktighet: 12 apr 201016 apr 2010

    Konferens

    KonferensEuropean Workshop on Mixed Integer Nonlinear Programming
    Period12/04/1016/04/10

    Citera det här