Single-Molecule Bioelectronic Sensor: Improving Reliability with Machine Learning Approaches

L. Sarcina, C. Scandurra, M. Caputo, M. Catacchio, C. Di Franco, P. Bollella, M. Chironna, F. Torricelli, I. Esposito, R. Osterbacka, G. Scamarcio, E. Macchia, L. Torsi*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Digitizing biomarkers analysis by quantifying them at the single-molecule level is the new frontier for advancing the science of precision health. The enhancement of the technical capabilities of bioelectronics systems, by giving clinicians the possibility to rely on biomarkers quantifications down to the single-molecule, holds the potential to revolutionize the way healthcare is provided. Such an analytical tool will indeed enable clinicians to associate a biomarker tiniest increase to the progression of a disease, particularly at its early stage.1 Eventually, physicians will be able to identify the very moment in which the illness state begins. Such an occurrence will enormously enhance their ability of curing diseases by supporting better prognosis and permitting the application of precise treatment methods. The single molecule bio-electronic smart system array for clinical testing - SiMBiT - technology has been developed within the blooming field of precision medicine, leveraging on the single molecule with large transistor (SiMoT)2 lab-based technology that can perform single-molecule detection of both proteins and DNA bio-markers.3,4 Specifically, the SiMBiT technology has lately developed the SiMoT lab-based device into a cost-effective portable prototype multiplexing array that integrates, with a modular approach, standard components and interfaces with novel materials and exhibits enhanced sensing capabilities. The SiMBiT prototype has proven its potency in early detection of pancreatic cancer, being capable to discriminate among low-grade and high-grade mucinous cyst's lesions in peripheral biofluids, such as plasma samples. In this perspective, machine learning approaches play a pivotal role in developing classifiers for a fast, reliable multiparametric biosensors output. Supervised model based on multivariate data processing has been undertaken to enable multiplexing, i.e. the simultaneous quantification of three biomarkers, namely MUC1 and CD55 proteins and KRAS DNA mutated sequence, in plasma and cysts' fluid samples. The main technological aspect of the SiMBiT device, with particular emphasis on the potency of machine learning approaches, will be discussed.

AlkuperäiskieliEnglanti
OtsikkoFLEPS 2023 - IEEE International Conference on Flexible and Printable Sensors and Systems, Proceedings
Kustantajathe Institute of Electrical and Electronics Engineers, Inc.
Sivumäärä7
ISBN (elektroninen)978-1-6654-5733-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma5th IEEE International Conference on Flexible and Printable Sensors and Systems, FLEPS 2023 - Boston, United States
Kesto: 9 heinäk. 202312 heinäk. 2023

Julkaisusarja

NimiIEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), proceedings
KustantajaIEEE
ISSN (elektroninen)2832-8256

Konferenssi

Konferenssi5th IEEE International Conference on Flexible and Printable Sensors and Systems, FLEPS 2023
Maa/AlueUnited States
KaupunkiBoston
Ajanjakso09/07/2312/07/23

Sormenjälki

Sukella tutkimusaiheisiin 'Single-Molecule Bioelectronic Sensor: Improving Reliability with Machine Learning Approaches'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot