Abstract
The design and characterization of spatiotemporal nano-/micro-structural arrangement that enable real-time and wide-spectrum molecular analysis is reported and demonestrated in new horizons of biomedical applications, such as wearable-spectrometry, ultra-fast and onsite biopsy-decision-making for intraoperative surgical oncology, chiral-drug identification, etc. The spatiotemporal sesning arrangement is achieved by scalable, binder-free, functionalized hybrid spin-sensitive (<↑| or <↓|) graphene-ink printed sensing layers on free-standing films made of porous, fibrous, and naturally helical cellulose networks in hierarchically stacked geometrical configuration (HSGC). The HSGC operates according to a time-space-resolved architecture that modulate the mass-transfer rate for separation, eluation and detection of each individual compound within a mixture of the like, hereby providing a mass spectrogram. The HSGC could be used for a wide range of applictions, including fast and real-time spectrogram generator of volatile organic compounds during liquid-biopsy, without the need of any immunochemistry-staining and complex power-hungry cryogenic machines; and wearable spectrometry that provide spectral signature of molecular profiles emiited from skin in the course of various dietry conditions.
Original language | English |
---|---|
Article number | 2203693 |
Number of pages | 11 |
Journal | Advanced Science |
Volume | 9 |
Issue number | 34 |
DOIs | |
Publication status | Published - 8 Dec 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- breast cancer
- chiral molecules
- hierarchical electronics
- molecular analysis
- sensors
- spectromerty
- volatile organic compound
- wearable devices