TY - JOUR
T1 - Quantification of current and future leaching of sulfur and metals from Boreal acid sulfate soils, western Finland
AU - Österholm, Peter
AU - Åström, Mats
PY - 2004
Y1 - 2004
N2 - The leaching of sulfur (S) and metals (Al, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Ni, Zn) from an acid sulfate soil (ASS) area in western Finland was determined on the basis of hydrochemical analyses (ICP-MS) of water samples collected monthly for 3 years from the stream draining that area. The average annual amount of leaching was as follows (kg/ha.year): S (633), Ca (281), Mg (199), Al (54), K (54), Mn (35), Fe (5.6), Zn (1.7), Ni (0.84), Co (0.79), Cu (0.070), Cd (0.0068). These high values are due to extensive oxidation of metal sulfides and weathering of minerals in the ASS profile. Calculations showed that other S inputs such as deposition and fertiliser use, and S outputs such as degassing and plant removal, are insignificant in comparison with current leaching losses. Before the area was artificially drained, the leaching losses of S from the study area must have been very small; otherwise, the S residual in the soil would have been depleted a long time ago. With current drainage practices, the leachable soil S residual will be halved in roughly 30 years, after which the S and metal loads of the drainage will have decreased. However, more time is needed before the concentrations will have decreased to an environmentally acceptable level, unless environmentally friendly measures are found and implemented.
AB - The leaching of sulfur (S) and metals (Al, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Ni, Zn) from an acid sulfate soil (ASS) area in western Finland was determined on the basis of hydrochemical analyses (ICP-MS) of water samples collected monthly for 3 years from the stream draining that area. The average annual amount of leaching was as follows (kg/ha.year): S (633), Ca (281), Mg (199), Al (54), K (54), Mn (35), Fe (5.6), Zn (1.7), Ni (0.84), Co (0.79), Cu (0.070), Cd (0.0068). These high values are due to extensive oxidation of metal sulfides and weathering of minerals in the ASS profile. Calculations showed that other S inputs such as deposition and fertiliser use, and S outputs such as degassing and plant removal, are insignificant in comparison with current leaching losses. Before the area was artificially drained, the leaching losses of S from the study area must have been very small; otherwise, the S residual in the soil would have been depleted a long time ago. With current drainage practices, the leachable soil S residual will be halved in roughly 30 years, after which the S and metal loads of the drainage will have decreased. However, more time is needed before the concentrations will have decreased to an environmentally acceptable level, unless environmentally friendly measures are found and implemented.
KW - Drainage
KW - Hydrogeochemistry
KW - Rate of leaching
KW - Runoff
KW - Acid sulfate soil
KW - Metals/chemistry
KW - Leaching
KW - Drainage
UR - http://www.scopus.com/inward/record.url?scp=7044271258&partnerID=8YFLogxK
U2 - 10.1071/sr03088
DO - 10.1071/sr03088
M3 - Article
AN - SCOPUS:7044271258
SN - 0004-9573
VL - 42
SP - 547
EP - 551
JO - Australian Journal of Soil Research
JF - Australian Journal of Soil Research
IS - 5-6
ER -