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In Brief
A novel tool, de novo multi-
omics pathway analysis (DMPA),
is introduced for prior data
independent and unbiased cell
signaling pathway inference from
multi-omics data. DMPA was
validated with available omics
data and outperformed previous
module and pathway inference
methods, especially with
datasets of low sample sizes.
DMPA includes upstream
regulator, subcellular location,
and biological function
prediction tools for modules and
pathways. DMPA was able to
accurately predict cellular
behavior from an in-house–
acquired multi-omics dataset on
TYRO3 signaling.

Highlights

• A prior data-independent multi-omics module and pathway inference tool was created.• The method was able to discover reported associations and outperformed prior art.• Prediction capabilities were developed to contextualize the results of the method.• Multi-omics data from cells expressing TYRO3 cleavage variants was acquired.• The prediction capabilities of the method accurately predicted cell behavior.
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De Novo Multi-Omics Pathway Analysis
Designed for Prior Data Independent Inference
of Cell Signaling Pathways
Katri Vaparanta1,2,3,* , Johannes A. M. Merilahti1,2,3, Veera K. Ojala1,2,3 , and
Klaus Elenius1,2,3,4,*

New tools for cell signaling pathway inference from multi-
omics data that are independent of previous knowledge
are needed. Here, we propose a new de novo method, the
de novo multi-omics pathway analysis (DMPA), to model
and combine omics data into network modules and
pathways. DMPA was validated with published omics data
and was found accurate in discovering reported molecular
associations in transcriptome, interactome, phosphopro-
teome, methylome, and metabolomics data, and signaling
pathways in multi-omics data. DMPA was benchmarked
against module discovery and multi-omics integration
methods and outperformed previous methods in module
and pathway discovery especially when applied to data-
sets of relatively low sample sizes. Transcription factor,
kinase, subcellular location, and function prediction al-
gorithms were devised for transcriptome, phosphopro-
teome, and interactome modules and pathways,
respectively. To apply DMPA in a biologically relevant
context, interactome, phosphoproteome, transcriptome,
and proteome data were collected from analyses carried
out using melanoma cells to address gamma-secretase
cleavage-dependent signaling characteristics of the re-
ceptor tyrosine kinase TYRO3. The pathways modeled
with DMPA reflected the predicted function and its di-
rection in validation experiments.

Several approaches that aim to model cell signaling net-
works from the abundance or expression information of cell
signaling molecules have been developed. These approaches
may be divided into two main categories: methods that are
reliant on or independent of previous knowledge. The
methods that rely on previous knowledge include the classical
gene set enrichment analysis (1), its derivatives, and multiple
topology-based methods that use previous data as a back-
bone to infer pathway networks (2). Signaling pathway infer-
ence based on previous knowledge, however, poses three
major caveats. Firstly, previous knowledge is often incomplete
signifying that all identified features are often not covered by

the available databases. Secondly, some features are much
more researched than others. The unevenness of the available
prior knowledge can lead to skewed results in endorsing re-
lationships that have already been uncovered and extensively
researched. Thirdly, molecular associations are often context-
dependent, indicating that the associations found in a different
context may not universally apply.
Robust cell signaling pathway inference methods that are

independent of previous knowledge have been generally
based on only one measure of molecular association. Cor-
relation, partial correlation, and mutual information have
been mainly used as association scores to measure the co-
expression or co-abundance of cell signaling molecules
(3–7). Approaches that utilize more than one molecular as-
sociation measure to derive an integrated score have not
been sufficiently explored in the context of prior information-
independent methods. Especially approaches that derive
and combine multiple association measures from the same
level of information have been scarcely utilized. In contrast,
approaches that integrate association measures from
different levels of information to infer master networks have
been successfully applied (8–10). For instance, correlation
measures that represent the co-expression, co-abundance,
and genetic co-dependency information have been inte-
grated with random forest regression to infer molecular
networks (8, 9).
Regression tree ensemble, Bayesian network, and ODE

model based approaches have been developed to solve
signaling pathway modeling problems such as gene regula-
tory networks (11–13). The transferability of these methods to
multi-omics data, however, is largely unexplored. Most ac-
curate renderings of cell signaling networks have been ac-
quired with methods that track changes in time-course data
(11, 14). Unfortunately, the cost and feasibility of acquiring
time-course data presents a limitation especially in patient
samples and in animal models.
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The current array of multi-omics integration methods mainly
consists of dimensionality reduction and clustering methods
that aim to stratify multi-omics data according to disease
subtype or patient characteristics and assist in biomarker
discovery (15–17). The module discovery methods such as
weighted correlation network analysis (WGCNA) and correla-
tion networks have been expanded and applied to multi-omics
data (18, 19). Beyond these efforts, the multi-omics integration
methods that aim to learn cell signaling networks seem to rely
on previous knowledge (20–25). A need for a robust scalable
benchmark method that can handle diverse omics data, can
infer molecular associations from single time point omics data,
is independent of previous knowledge and outperforms
methods that are based on only one measure of molecular
association is evident.

EXPERIMENTAL PROCEDURES

The Inference of Network Modules and Pathways in the DMPA

Matlab R2016a (MathWorks) was used as the coding environ-
ment. In the module and pathway inference of de novo multi-omics
pathway analysis (DMPA), the strength of association between two
features is determined by the combined score. The combined score
is derived from the multiplication of the adjusted correlation and the
stoichiometry score. The unadjusted correlation score for all the
possible feature pair combinations is calculated with the Spearman
correlation. The unadjusted stoichiometry score for all the feature
pair combinations in turn is determined by dividing the third quartile
value (Q3) with the first quartile (Q1) value of an ordered set of
relative expression values. The mathematical formulations for the
unadjusted correlation and stoichiometry scores are presented in
Figure 1A. The expression values of the features in an omics
dataset are supplied to calculate the unadjusted correlation and
stoichiometry scores. The unadjusted correlation and stoichiometry
scores are ranked by feature and adjusted by the feature-wise rank
to derive scores from 1 to 0 in equal increments. The highest un-
adjusted correlation score and lowest unadjusted stoichiometry
score for the feature pair including a specific feature are assigned 1
as the adjusted score. Two versions of the stoichiometry score
were devised for non-zero–inflated and zero-inflated data. In the
non-zero–inflated version of the stoichiometry score, relative
expression data is considered only from samples in which the
expression value for both features is non-zero. In the zero-inflated
version of the stoichiometry score (weighted stoichiometry score,
parameter 4 in supplemental Fig. S1), the stoichiometry score is
punished (inflated) if the expression value for one feature is zero.
The stoichiometry score, in turn, is rewarded (deflated) if the
expression value for both features is zero.

Cut-off parameters C and S were devised to reduce compu-
tational time and to filter out false positives to only consider as-
sociations with combined scores higher than a certain threshold
(supplemental Fig. S1). The cut-off parameter C is determined by
the minimum number of associations considered per feature in the
analysis. The cut-off parameter S, in turn, is determined by the
number of features in the dataset that are estimated to not have
any true association. The cut-off parameters C and S are used to
find a threshold for the combined score that allows at least C
number of feature pairs for S number of features to be included
for further analysis. After selecting the feature pairs with a

combined score above the threshold determined by the C and S
parameters, a filtering step ensures that no feature pair with a
significant discrepancy in their feature-wise combined score is
included in further analysis. The threshold for the filtering is
determined by a parameter (parameter 10 in supplemental Fig. S1)
that sets the threshold for the filtering based on the expected
score difference between the set number of features.

The network module inference proceeds by finding maximally
scoring three feature cliques (sum of the combined scores be-
tween all three features) for each remaining feature. The three
feature modules are combined and trimmed based on common
features and module scores (average of the combined score for all
features in a module) as described in the following order: (1)
modules with two common features are combined. (2) Modules
with only one common feature are combined if the size of both
modules is under or equal to the set parameter 7 value and the
module score is higher or equal to the value set by the parameter
8 (default value 0.66, supplemental Fig. S1) indicating a strong
association. The parameter for this joining (parameter 7 in
supplemental Fig. S1) can be set if modules of different size are
preferred. (3) Modules with two common features are again
combined. (4) Features of the remaining three feature modules are
removed if some of the features are already present in larger
modules. (5) The remaining small modules are joined if they still
have a common feature. This step can be omitted and the
threshold for combined size of the joined modules can be
adjusted (parameter 9 in supplemental Fig. S1). The inference al-
lows for a feature to be a member of more than one module.

The same strategy is used for the combination of the network
modules into pathways as for the initial module inference with few
modifications. (1) The sample-wise median values of all features in
a network module are used as expression values for network
modules. (2) The absolute value of the Spearman correlation is
used as the unadjusted correlation score to allow equal combi-
nation of upregulated and downregulated modules (parameter 3 in
supplemental Fig. S1). The pseudocode of DMPA can be found in
the Supplementary Materials. The default settings of DMPA were
used for the analysis of the TYRO3 signaling pathways.

Validation of Network Modules and Their Combination to
Pathways

The reported protein–protein interactions, kinase substrate
phosphosite relationships, transcription factor target gene re-
lationships, methylation trait relationships, and metabolic re-
actions were acquired from the STRING, PhosphoSitePlus,
ChEA3, and Rhea databases, respectively (26–31). The annotated
signaling pathways were acquired from PathwayCommons (32).
The validation interactome, phosphoproteome, transcription, and
metabolomics data were acquired from the publications of Batth
et al. and Hein et al. and from ArchS4 and MetaboLights data-
base, respectively (33–36) (supplemental Table S14). The
methylation data and multi-omics data for the validation of the
network module combination to pathways was acquired from the
LinkedOmics database (37), where a combination of either pro-
teomics, transcriptomics, methylome, phosphoproteomics, protein
array, glycosylation, or acetylation data were analyzed and com-
bined. Two different validation scores were derived for network
modules and pathways, respectively. The sum of all protein–
protein interactions, kinase substrate phosphorylation site re-
lationships, transcription factor target gene relationships, metab-
olites in the same metabolic reaction, or methylated regions
associated with the same trait in the inferred network modules
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FIG. 1. The underlying concepts of the de novo multi-omics pathway analysis. A, mathematical formulation of the unadjusted (raw)
correlation and stoichiometry scores. B, schematic representation of the inference of network modules from the adjusted correlation and
stoichiometry scores in the de novo multi-omics pathway analysis. C, schematic representation of the principles of combining the network
modules into multi-omics pathways.
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was used as the validation score for interactome, phosphopro-
teome, transcriptome, metabolome, and methylome network
module validation, respectively. The sum of co-occurrences of
two features from two different network modules in the same
pathway annotation for inferred pathways was used as a valida-
tion score for the combination of network modules into pathways.
To validate the network modules, the validation score from the
inferred network modules was compared to the sum of all
protein–protein interactions, kinase substrate phosphorylation site
relationships, transcription factor target gene relationships, me-
tabolites in the same metabolic reaction, or methylated regions
associated with the same trait in randomly modeled network
modules of same size to derive an empirical probability density
function from 1000 rounds of simulation. To validate the combi-
nation of network modules into pathways, the validation score
from the inferred pathways was compared to the sum of all co-
occurrences of two features in two different randomly modeled
and combined modules of same size in the same pathway
annotation to derive an empirical probability density function from
1000 rounds of simulation. An Epanechnikov kernel (38) was used
to fit the sum of all co-occurrences from randomized modules or
pathways into an empirical probability density function. The cor-
responding p-values were drawn from the empirical cumulative
distribution function. The relative distance of the validation score
from the median of the empirical probability distribution was
calculated by subtracting the median value from the validation
score and by dividing the remainder with the median value. To
assess the effect of different association scores on the accuracy
of the network modules and pathways, the modules were inferred
with either the correlation score, stoichiometry score, or the
combined score and combined with either correlation score,
stoichiometry score, or the combined score. The conservation of
the different scores was assessed in each data type by deriving
the median score of the inferred network modules or pathways in
datasets different from the one used for the initial inference.

Benchmarking

The transcriptome datasets and multi-omics datasets utilized in
DMPA validation were additionally used for benchmarking
(supplemental Table S14). The R implementations of WGCNA (3),
low-order partial correlation (LOPC) (39), GENIE3 (13), and Trans-
kingdom Network Analysis (TransNet) (40) were used according to
the developers' instructions. WGCNA was additionally used to
analyze multi-omics data as in the MiBiOmics application (18). The
power for the WGCNA analysis was set based on the scale-free
topology model fit and mean connectivity as instructed by the
WGCNA documentation. The genes predicted to be controlled by
the same upstream gene in GENIE3 were considered as part of the
same module. The validation score and statistical significance of
the validation score were estimated for modules derived with
WGCNA and GENIE3 as for the network modules of DMPA. Since
LOPC only returns network edges, a separate validation strategy to
compare the performance of LOPC and DMPA was developed. The
number of reported transcription factor target gene relationships in
the network edges returned by LOPC as determined by the
ENCODE database (29) was calculated and used as a validation
score. The validation score was compared to the sum of all tran-
scription factor target gene relationships in randomly modeled
modules of same size to derive an empirical probability density
function from 1000 rounds of simulation. An Epanechnikov kernel
(38) was used to fit the simulated data into the empirical probability
density function. The corresponding p-values and relative distance

from the median of the randomized distribution were estimated from
the empirical cumulative distribution function. To compare DMPA
against LOPC, the number of reported transcription factor target
gene relationships in the final edges in the network modules as
suggested by the remaining combined scores after module joining
and trimming were considered as network edges. The validation
score and the empirical probability distribution were similarly esti-
mated for the networks suggested by DMPA as for the networks
suggested by LOPC. The validation score for the pathways sug-
gested by the TransNet and multi-omics WGCNA analysis were
estimated as those for the DMPA. The clusters connected by the
connected nodes by the TransNet analysis and the modules con-
nected by a significant correlation of their eigenvectors by WGCNA
were considered a pathway. A version of the pathway validation
method where only the connections between different modules
were randomized was developed and applied to TransNet, multi-
omics WGCNA, and DMPA.

Data Simulation

Simulation strategy adapted from Zuo et al. (5) (2014) was utilized to
simulate network modules. The modules X1 = {x1, x2, x3, x4, x5} and
X2 = {x6, x7, x8, x9, x10} were defined as:

x1 = s1 + e1

x2 = λ1 × x1 + e2

x3 = α1 × x2 + e3

x4 = α2 × x3 + e4

x5 = α3 × x4 + λ2 × x1 + e5

x6 = μ1 × x10 + e6

x7 = α4 × x6 + e7

x8 = α5 × x7 + e8

x9 = α6 × x8 + μ2 × x10 + e9

x10 = s2 + e10

In the simulated data for parameter S and C sensitivity analyses
s1, s2 ∼ N(Y1, 1) and e1 − e10 ∼ N(1, Y1 ÷10), where
Y1 ∼ Z ∈ [2, 30] and λ1, λ2, α1− α6, μ1,μ2 were set to 1. In the
simulated data following the negative binomial distribution s1, s2 ∼
NB(Y2, 0.05) and e1 − e10 ∼ NB(Y2,0.5), where Y2 ∼ Z ∈ [2,15]
and λ1, λ2, α1− α6, μ1,μ2 were set to 1. In the simulated data
following the beta distribution s1, s2 ∼ B(Y3, 2) and e1 −
e10 ∼ B(Y3, 50), where Y3 ∼ Z ∈ [2, 10] and λ1, λ2, α1− α6, μ1,μ2
were set to 1. The datapoints with no true module assignment
were simulated as s3 − e11, where s3 ∼ Z ∈ [1, 35] and
e11 ∼ N(0, 1) or s3 ∼ NB(Y4, 0.05) and e11 ∼ NB(Y4, 0.5) and Y4 ∼
Z ∈ [2,15] or s3 ∼ B(Y4, 3) and e11 ∼ B(Y4, 50) and Y4 ∼ Z ∈ [2,
10], respectively. Fifty samples were simulated for parameter S
and C sensitivity analyses. In the simulated data used to estimate
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data dimensionality requirements of DMPA s1, s2 ∼ N(Y1, 1) and
e1 − e10 ∼ N(Y1 ÷ 5,Y1 ÷ 50), where Y1 ∼ Z ∈ [2,10].

Cell Culture and Transfections

WM-266-4 human melanoma cancer cells and HEK293T cells
were cultured in Dulbecco’s modified Eagle’s medium (Life Tech-
nologies) supplemented with 10% (weight/vol) fetal calf serum
(Promocell). For the transfection of WM-266-4 cells, jetPRIME
(Polyplus-transfection) transfection reagent was used according to
the manufacturer’s protocol. To produce lentiviral particles, the
HEK293T cells were transfected with the lentiviral packaging and
shRNA plasmids with FuGENE6 (Roche) according to the manu-
facturer’s instructions.

ADAM10 and ADAM17 Cleavage Site Prediction

The cleavage site prediction method was modified from a
previously published transcription factor–binding prediction
method (41). The positional relative frequencies of the amino acid
sequences in putative a disintegrin and metalloprotease 10 and
17 (ADAM10 and ADAM17) cleavage sites were calculated from
the results of two published peptide screens (42, 43). The
cleavage sites for ADAM10 and ADAM17 were predicted with a
sliding window analysis. The probability for an ADAM cleavage
motif based on the positional relative frequencies of amino acid
residues with a 0th order Markov chain was calculated from
sequence windows of 10 residues. The probability for no ADAM
cleavage motif was calculated from the same sequence windows
with 0th order Markov chain using the relative frequencies of
amino acid residues in proteins as determined by Uniprot (44) as
positional frequencies. The sequence windows with at least two
times higher probability for an ADAM cleavage motif than no
ADAM cleavage motif were considered probable cleavage sites.
Additional constraint for the cleavage motifs to reside within 35
amino acids from the transmembrane domain was added, due to
known ectodomain size constraints of gamma-secretase sub-
strates (45). The method was validated by ensuring its capability
in finding published cleavage sites in the peptides described in
Goth et al. (46), 2015. P408/L409 and A418/G419 of TYRO3 were
predicted to serve as cleavage sites with highest predicted
relative cleavage site probabilities for both ADAM10 and
ADAM17.

Plasmids and Cloning

The pDONR223-TYRO3ΔGS vector including a TYRO3 insert
with a mutated gamma-secretase cleavage site (I449A; TYRO3
ΔGS) has been previously described (Merilahti et al., 2017). Con-
structs encoding TYRO3 with mutated ADAM cleavage sites
(P408A/L409P/G419P triple mutation; TYRO3 ΔADAM) were
generated using synthetic DNA fragments (Integrated DNA Tech-
nologies) and assembled into pDONR223-based TYRO3 Gateway
entry plasmid (Addgene kit #1000000014) (47, 48) using NEBuilder
HiFi DNA Assembly Master Mix (New England Biolabs). WT
TYRO3, TYRO3 ΔGS, and TYRO3 ΔADAM constructs were cloned
from pDONR223 plasmids into pEZY-myc-his (Addgene #18791)
(49) and pMAX-DEST (Addgene #37631) (50) expression plasmids
using Gateway Cloning Technology with LR Clonase II Enzyme
Mix (Life Technologies) to allow expression of C-terminally Myc-
his-tagged and V5-tagged proteins, respectively. Mutations were
verified by sequencing.

For the production of lentiviral particles carrying shRNAs, the
following plasmids were used: pLKO.1-puromycin plasmid (containing
the shRNA) (Sigma-Aldrich), pRSV-Rev, pMDLg/pRRE, and pMD2.G
(a gift from Didier Trono; Addgene plasmids #12253, #12251, and

#12259). Restriction digestion with EcoRI was used to verify the
integrity of the commercial plasmids.

Antibodies

Anti-TYRO3 (5585), anti-V5 (13202), anti-phospho-STAT3 (8862),
and anti-STAT3 (9972) antibodies were purchased from Cell Signaling
Technology. Anti-actin (MA1-744) antibodies were purchased from
Thermo Fisher Scientific. Anti-β-tubulin (T7816) and anti-
phosphotyrosine (4G10; 5-321) antibodies were purchased from
Sigma-Aldrich.

Immunoprecipitation and Western Analysis

For immunoprecipitation experiments, WM-266-4 vector control
cells or cells expressing Myc-tagged TYRO3 constructs were incu-
bated in serum-free conditions overnight before lysis into lysis buffer
(0.1% Triton X-100, 10 mM Tris–Cl pH 7.4, 150 mM NaCl including
Pierce protease and phosphatase inhibitor mini tablet (Thermo Fisher
Scientific)). The cell lysates were pre-cleared with 50 μl Pierce protein
G magnetic beads (Thermo Fisher Scientific) at 4 ◦C for 1 h and
subjected to affinity enrichment with Pierce anti-c-Myc magnetic
beads (Thermo Fisher Scientific) at 4 ◦C overnight. The beads were
washed five times with 5 TBS-T buffer (125 mM Tris, 750 mM NaCl,
0.25% Tween-20) and once with ultrapure water. The proteins were
denatured and eluted from the beads by incubation at 95 ◦C for 10 min
in SDS-PAGE loading buffer.

For Western analyses, cell lysates were prepared as above. The
cells were treated with 5 μM of GSI IX (Calbiochem) for 4 hours before
lysis where indicated. The lysates were run on SDS-PAGE gels and
the separated proteins were transferred to nitrocellulose membranes.
The membranes were incubated with indicated primary antibodies and
IRDye-conjugated secondary antibodies (LI-COR) to label the proteins
of interest. The IR-signals were detected with the Odyssey CLx im-
aging system (LI-COR).

Generation of Stable TYRO3 Knock-Down Cell Lines

For stable downregulation of TYRO3, TYRO3-targeted lentiviral
shRNA plasmid TRCN0000231528 (CCGGTTGGTATCTCAGGTCT-
GAATCCTCGAGGATTCAGACCTGAGATACCAATTTTTG) (MISSION,
Sigma-Aldrich) was used. The control lentiviral shRNA plasmid
(Addgene plasmid #1864) was a kind gift from David Sabatini (51).
Third generation lentiviral packaging system (Addgene) was used in
HEK293T cells to produce shRNA-carrying lentiviruses. Growth me-
dium was changed every 24 h post-transfection. Virus-containing
medium was collected after 48 and 72 h, filtered, and tittered. The
virus-containing medium was used to infect WM-266-4 cells at a
multiplicity of infection of 2 in the presence of 8 μg/ml Polybrene
(Sigma-Aldrich). Cells were maintained in the presence of 1 μg/ml
puromycin (Sigma-Aldrich) to select the cells that stably express the
lentiviral shRNA plasmids.

RNA-Sequencing

The WM-266-4 cell transfectants were starved in serum-free me-
dium overnight and lysed. Total RNA was extracted using NucleoSpin
RNA Plus kit (Macherey-Nagel).

The quality of the RNA samples was ensured using Advanced
Analytical Fragment Analyzer (Agilent). The sequencing library was
created with 300 ng of sample with TruSeq Stranded mRNA HT Kit
(Illumina) and indexed with IDT for Illumina TruSeq RNA UD Indices
according to manufacturer’s protocol. Genome-wide strand-specific
RNA-seq was performed at Turku Bioscience Centre sequencing core
with Illumina HiSeq3000 using 75 bp paired-end reading.
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Mass Spectrometry Sample Preparation

The WM-266-4 cell transfectants were lysed in mass spectrometry
lysis buffer (6 M guanidine hydrochloride, 100 mM Tris–HCl pH 8.5,
5 mM Tris(2-carboxyethyl)phosphine, 10 mM chloroacetamide) or af-
finity enrichment lysis buffer (70 mM octyl-β-D-glucopyranoside,
25 mM Tris–HCl pH 7.5, 150 mM NaCl, Pierce protease and phos-
phatase inhibitor mini tablet). The lysates were centrifuged at 20000g
for 6 min, and the supernatants were collected. The protein concen-
tration of the lysates was measured with Bradford protein assay (Bio-
Rad) before proceeding to affinity enrichment or to protein digestion.

Affinity Enrichment of Mass Spectrometry Samples

The WM-266-4 cell transfectants were subjected to protein cross-
linking with 2 mM DTBP for 10 min. The crosslinking reaction was
quenched by incubation with 50 mM Tris–HCl pH 7.5 for 15 min before
cell lysis. Equal amounts of WM-266-4 cell lysates were pre-cleared
with Pierce protein G magnetic beads (Thermo Fisher Scientific) at
4 ◦C for 1 h and subjected to affinity enrichment with HisPur Ni-NTA
magnetic beads (Thermo Fisher Scientific) at 4 ◦C overnight. The
beads were washed five times with 5 TBS-T buffer (125 mM Tris,
750 mM NaCl, 0.25% Tween-20) and once with ultrapure water. The
proteins were denatured, alkylated, and eluted from the beads at 95
◦C for 10 min in elution buffer (6 M guanidine hydrochloride, 100 mM
Tris–HCl pH 8.5, 10 mM Tris(2-carboxyethyl)phosphine, 10 mM
chloroacetamide).

Protein Digestion

Proteins enriched in affinity enrichment or purified cell lysates were
digested with lys-C (enzyme/protein ratio 1:100) for 1 h at 37 ◦C. The
samples were diluted 1:10 with 50 mM NH4HCO3 and digested with
trypsin (enzyme/protein ratio 1:100) at 37 ◦C overnight.

Sample Desalting

Sep-Pak tC18 96-well plate (Waters) was activated with 100%
methanol and conditioned with 0.1% TFA in 80% acetonitrile (Thermo
Fisher Scientific). Digested peptides were acidified to a pH 3 with TFA
and desalted with the activated and conditioned Sep-Pak tC18
96-well plate. The peptides were washed with 0.1% TFA and eluted
with 0.1% formic acid in 50% acetonitrile. Samples were dried in
Hetovac vacuum centrifuge (Heto Lab Equipment) and stored dry
in −20 ◦C until analysis with mass spectrometer.

Phosphopeptide Enrichment

Phosphopeptides were enriched from desalted and dried peptides
using Pierce high-select TiO2 phosphopeptide enrichment kit (Thermo
Fisher Scientific) according to the manufacturer’s instructions.
Following elution, phosphopeptides were dried with Hetovac vacuum
centrifuge and stored as dry in −20 ◦C until analysis with mass
spectrometer.

Mass Spectrometry

Dried peptide samples were resuspended in 0.1% formic acid and
sample concentrations were measured with Nanodrop 1000 (Thermo
Fisher Scientific). Equal amounts of samples were analyzed on an
Easy-nLC 1000 coupled to an Orbitrap Fusion Lumos instrument
(Thermo Fisher Scientific) at Turku Bioscience Centre Proteomics
Core Services. Peptides were loaded on in-house packed 100 μm ×
2 cm precolumn packed with ReproSil-Pur 5 μm 200 Å C18-AQ beads
(Dr Maisch) using 0.1% formic acid in water (buffer A) and separated
by reverse phase chromatography on a 75 μm × 15 cm analytical
column packed with ReproSil-Pur 5 μm 200 Å C18-AQ beads (Dr
Maisch). All separations were performed using a 60 min gradient

ranging from 8% buffer B (80% acetonitrile in 0.1% formic acid) to
21% in buffer B in 28 min and to 36% buffer B in 22 min and ramped
to 100% buffer B in 5 min at flow rate of 300 nl/min. The washout
followed at 100% buffer B for 5 min.

All MS spectra were acquired on the orbitrap mass analyzer and
stored in centroid mode. For data-dependent acquisition experiments,
full MS scans were acquired from 300 to 1600 m/z at 120,000 reso-
lution with fill target of 7E5 ions and maximum injection time of 50 ms.
The most abundant ions on the full MS scan were selected for frag-
mentation using 1.6 m/z precursor isolation window and beam-type
collisional-activation dissociation (HCD) with 30% normalized colli-
sion energy for a cycle time of 3 s. MS/MS spectra were collected at
15,000 resolution with a fill target of 5E4 ions and maximum injection
time of 100 ms. Fragmented precursors were dynamically excluded
from selection for 35 s.

Protein Identification and Quantification

MS/MS spectra were searched with MetaMorpheus (version
0.0.303; https://smith-chem-wisc.github.io/MetaMorpheus/) (52)
against human proteome containing known post-translational
modifications (downloaded from Uniprot on 19.2.2019). The search
database contained 20,645 protein sequences including 490
contaminant sequences added by MetaMorpheus software. The
mass spectrometry files were calibrated and possible post-
translational modifications were searched with G-post-translational
modification (PTM)-D search in MetaMorpheus. Following parame-
ters were used for the PTMs search: cysteine carbamidomethylation
and methionine oxidation were set as constant and variable modi-
fications, respectively and common biological, metal, or artifact
PTMs were incorporated into the search database with G-PTM-D
task. Peptides and proteins were identified with final search using
the augmented search database with incorporated G-PTM-D–based
modifications. Precursor mass tolerance was set to 5 ppm and
product mass tolerance was set to 20 ppm. Peptide and protein
quantification was performed with the FlashLFQ algorithm (53).
Peptides were accepted with search engine score above 5. Search
results were filtered to a 1% false discovery rate at peptide-spec-
trum match and protein level. For both protein and peptide data
files, only proteins or peptides identified in target database and
proteins present in at least three of the samples were retained for
downstream analyses.

RNAseq Data Analysis

The RNAseq reads were quality checked with FastQC (Babraham
Bioinformatics), quality and adapter trimmed with PRINSEQ (54) and
Trimmomatic (55), and pseudoaligned with kallisto v 0.46.0 (56) to
human transcriptome Ensembl v96 (57) to retrieve transcripts per
million values. The batch effect between experiment 1 and experi-
ments 2 and 3 was corrected with batchelor (58) and the transcripts
per million values were normalized by library size. Differential
expression between the vector control sample and samples repre-
senting the different variants of TYRO3 was analyzed with DeSeq2
(59). Transcripts with fold change over 1.5 and false discovery rate-
adjusted p-value lower or equal than 0.05 were selected for further
analysis. The transcripts significantly different between the vector
control sample and all of the samples representing the TYRO3 variants
(WT, ΔADAM, or ΔGS) were considered to reflect the signaling
mediated by the full-length TYRO3 receptor. The transcripts signifi-
cantly different between the vector control sample and the sample
representing WT TYRO3, but not between the vector control sample
and the samples representing ΔADAM or ΔGS variant of TYRO3, were
considered to reflect the signaling mediated by the soluble intracellular
domain (ICD) of TYRO3.
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Mass Spectrometry Data Analysis

The interactome, proteome, and phosphoproteome data were
normalized to the sum of intensities of all detected proteins in the
sample. A probability density function was fitted with Epanechnikov
kernel to median normalized intensities of different treatments to es-
timate the p-value for differential expression from the cumulative
density function. Proteins with fold change over 1.5 and false
discovery rate-adjusted p-value lower or equal to 0.05 were selected
for further analysis. The co-precipitating proteins, proteins, and
phosphorylated residues significantly different between the vector
control sample and all of the samples representing the TYRO3 variants
(WT, ΔADAM, or ΔGS) were considered to reflect the signaling
mediated by the full-length TYRO3 receptor. The proteins significantly
different between the sample representing WT TYRO3 and the vector
control sample as well as between the sample representing WT
TYRO3 and samples representing the ΔADAM or ΔGS variant of
TYRO3 were considered to reflect the signaling mediated by the sol-
uble ICD of TYRO3.

Immunofluorescence and Confocal Microscopy

To detect ectopically expressed V5-tagged TYRO3 constructs,
WM-266-4 transfectants were cultured on coverslips in serum-free
conditions overnight. The cells were fixed with 4% para-
formaldehyde and permeabilized with 0.1% Triton X-100. Cells were
stained with anti-V5 (13202; Cell Signaling Technologies) and Alexa-
Fluor 555 goat anti-rabbit (Molecular Probes). After labeling the nuclei
with 4′,6-diamidino-2-phenylindole (Sigma-Aldrich), the cells were
mounted with Mowiol 40-88 (Sigma-Aldrich). Images were acquired
with Zeiss LSM 880 confocal microscope (Zeiss). Morphological
analysis were carried out from confocal slices in plane with the plasma
membrane using MorphoLibJ v 1.4.2.1 (60) plugin in Image J. EzCo-
localization plugin (61) in ImageJ (version 1.53c) was used to analyze
colocalization from confocal slices taken from the middle of the nu-
cleus. The colocalization of V5-signals with 4′,6-diamidino-2-
phenylindole was calculated using Pearson correlation coefficient
(62) to measure the nuclear localization of TYRO3.

Live-Cell Imaging of Cell Growth

The WM-266-4 cell transfectants were plated in serum-free medium
at 30,000 cells/24-well. The wells were imaged every 2 h for 120 h and
cell confluence was measured with Incucyte ZOOM (Sartorius).

Real-Time Cell Adhesion Assay

The WM-266-4 cell transfectants were detached using 5 mM EDTA
6 to 12 h after transfection. The cells were plated at 15,000 cells/well
onto fibronectin-coated (5 μg/cm2) xCELLigence E-plate (Agilent) wells
in serum-free medium. Real-time cell impedance was measured with
the xCELLigence RTCA analyzer (Agilent) for 24 h. The resulting cell
index values were normalized to the number of cells remaining in the
wells after 24 h.

Information Visualization and Statistics

For statistical analysis, the GraphPad Prism software v 9.02
(GraphPad Software; https://www.graphpad.com/features) and Mat-
lab 2016a (MathWorks; https://se.mathworks.com/products/matlab.
html) were utilized. The details of the statistical testing are described
in figure legends. All datasets were tested for equality of variance and
normality, and parametric or nonparametric testing was used
accordingly. Heatmaps were generated with Morpheus (https://
software.broadinstitute.org/morpheus). The visualizations of the
inferred network modules and pathways were created with Cytoscape
(Version 3.8.2) (63) and Affinity Designer (Version 19.0; Serif).

Experimental Design and Statistical Rationale

Three biological replicate experiments and three technical repli-
cates per experiment were analyzed in the proteomics studies. To
examine the differential interactome, proteome, and phosphopro-
teome between the WT and cleavage-resistant variants of TYRO3, the
proteome, interactome, and phosphoproteome of the cell expressing
the WT TYRO3 (n = 3) was compared to the proteome, interactome,
and phosphoproteome of both cleavage resistant variants of TYRO3
(n = 6). Likewise, the proteome of the full-length TYRO3 was deter-
mined by comparing the proteome, interactome, and phosphopro-
teome of the no TYRO3 control (n = 3) to the proteome, interactome,
and phosphoproteome of all TYRO3 variants (n = 9). Non-parametric
testing was utilized. Statistical significance was reached at an alpha
level of 0.05 with non-parametric testing with unequal sample size per
analyzed group.

RESULTS

The Underlying Concepts of DMPA

We set out to develop a new robust de novo method to infer
network modules from different omics data and to combine
the modules into multi-omics pathways. Literature search of
previous reports of the key features of omics data predicting
molecular associations produced the following observations:
First, multiple sources indicate the ability of correlation of
expression values to predict molecular association to a certain
extent (64, 65). Secondly, the findings from an extensive hu-
man interactome study indicate that conserved stoichiometry
between the expression values of two co-precipitated proteins
can be predictive of protein–protein interaction networks (36).
From the grounds of these two concepts, a combined score
that serves as a metric for both correlation and conserved
stoichiometry was devised to reflect the strength of associa-
tion between two features. The suitability of the conserved
stoichiometry as an association score was additionally
explored since it is unknown whether stable between-sample
stoichiometry between the expression values of two features
reflects the strength of association in diverse omics data. In
Figure 1A, the mathematical formulation for the unadjusted
correlation and stoichiometry score is presented. The unad-
justed correlation score is based on the nonparametric
Spearman correlation. The unadjusted stoichiometry score in
turn is derived from the division of the third quartile and first
quartile value in an ordered set of the relative expression
values of two features. The unadjusted correlation and stoi-
chiometry scores for each possible feature pair for one feature
are ranked and adjusted to values between 1 and 0 by rank to
allow for a linear scale. The highest correlation score and
lowest stoichiometry score for the feature are assigned as 1
and receive the highest adjusted score. The combined score is
expressed as a simple non-weighted feature-wise multiplica-
tion of the adjusted correlation and stoichiometry scores.
Nonparametric formulation was chosen to desensitize the
inference to technical variation and outlier values.
To reduce computational demand (O(n2) for run time) and

false positives, a cut-off for the combined score was devised
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to consider only strong associations. In the current version of
DMPA, the cut-off threshold is controlled by two parameters
that reflect the number of associations considered for the
features in the data (parameter C) and the predicted number of
features with no true association in the data (parameter S)
(supplemental Fig. S1).
The inference of network modules from the combined score

after the cutoff was designed to follow the nearest neighbor
principle, which assumes that a high association score be-
tween three features is more predictive of true association
than a high score between only two features. The inference
method is outlined in Figure 1B and utilizes the combined
scores above the cut-off threshold to find maximal scoring
3-feature cliques. These 3-feature cliques are consequently
combined to find larger modules and trimmed to remove
features that are present in a larger module. The principles of
the combination and trimming are outlined in more detail in the
Experimental Procedures section.
The combination of the network modules to pathways was

designed to follow a similar principle to the initial inference of
the network modules (Fig. 1C). A median expression value of
all the features in a module in each sample is used as a rep-
resentation of the expression values of a module. The com-
bined score for each module pair is calculated based on these
values. To allow equal combination of down- and up-
regulated modules, an absolute value is taken from the
Spearman correlation to equally weigh positive and negative
correlations. The modules are then combined further into
pathways based on the combined scores above the after-cut-
off threshold with the same rules for combining and trimming
the maximal scoring 3 feature cliques that were used in the
initial network module inference.
The de novo multi-omics pathway analysis is available

both as a matlab code and executables in Mendeley data:
https://data.mendeley.com/datasets/m3zggn6xx9/draft?a=
71c29dac-714e-497e-8109-5c324ac43ac3. Installation in-
structions, directions for use, and a thorough description of
all the parameters of DMPA are provided in the accompa-
nying documentation. The DMPA software is open source
and available under the CC-BY license.

Validation of the Network Modules Inferred with DMPA

The performance of the derived network module inference
method was assessed with published interactome (36),
phosphoproteome (34), and transcriptome (33) data
(supplemental Table S14). While molecular associations are
context-dependent, certain associations are more frequently
reproduced in different contexts. Therefore, a level of con-
servation is expected from a score that would accurately
reflect the strength of molecular association. The conservation
of the correlation, stoichiometry, and combined scores were
examined by inferring modules from the expression or abun-
dance values of proteins, phosphorylation sites, or transcripts
by utilizing the different molecular association scores. The

median value of the scores of the inferred modules was
examined in another dataset apart from the one used for the
initial module inference. A median score above 0.5, the me-
dian score expected if the scores would be randomly
assigned, indicated conservation.
In all examined omics data (supplemental Table S14), the

combined score was statistically significantly conserved,
while the stoichiometry score was significantly conserved
only in the mass spectrometry–derived interactome and
phosphoproteome data (Fig. 2A). The correlation score in
turn was below the 0.5 threshold value in all tested omics
data, indicating that the correlation score alone is least likely
to predict molecular association (Fig. 2A). The conservation
of the combined score was similarly examined in methylome,
metabolomics, and protein acetylation data. The combined
score was discovered to be significantly conserved also in
these omics data (supplemental Fig. S4A).
To validate that the network modules reflect previously re-

ported molecular associations, a method to quantify the
number of reported associations in the network modules was
devised. Reported protein–protein interactions, kinase sub-
strate phosphorylation site relationships, and transcription
factor target gene annotations were downloaded from
STRING (26), PhosphoSitePlus (27), and ENCODE (29) data-
bases, respectively. The sum of all co-occurrences of proteins
reported to interact, substrate sites reported to be phos-
phorylated by the same kinase, or transcripts reported to be
the target gene for the same transcription factor inside the
network modules was used as a validation score. The vali-
dation score was calculated from the network modules infer-
red with correlation, stoichiometry, and combined scores to
compare the effect of the different scores on the accuracy of
DMPA. The validation score quantified from the network
modules was compared to the sum of all co-occurences of
proteins reported to interact, substrate sites reported to be
phosphorylated by the same kinase, or transcripts reported to
be the target gene for the same transcription factor of
randomly formulated network modules of the same size to
calculate the probability that a similar validation score would
be acquired randomly. The probability density of the sum of all
co-occurences of these randomized network modules are
indicated with a solid line and the validation scores for the
network modules modeled with the different scores with
dashed lines in the Figure 2, B–D. The corresponding p-values
drawn from the cumulative probability densities of the ran-
domized network modules for the validation scores of the
network modules modeled with different scores are visualized
in Figure 2E.
The network modules modeled with the combined scores

consistently reflected reported molecular associations in all
interactome, phosphoproteome, and transcriptome data. In
interactome data, the co-occurrence of two proteins in the
same network module predicted a protein–protein interaction
between the two proteins more often than random assignment
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FIG. 2. Validation of network modules inferred with the DMPA. A, the conservation of correlation, stoichiometry, and combined score in the
interactome, phosphoproteome, and transcriptome data. One dot represents the median score between all features of all modeled modules of a
dataset that was not utilized for the initial network module inference. The dashed line represents the median score of randomized modules. For
statistical testing, two-tailed one sample t test against the theoretical median value of 0.5 was utilized. B–E, empirical probability densities
simulated by randomizing the features of the inferred network modules into modules of the same size and the corresponding p-values (E) for the
validation scores of the modules inferred with DMPA. The network modules were inferred from either interactome (B and E), phosphoproteome
(C and E), or transcriptome data (D and E) by utilizing either the correlation (Corr), the stoichiometry (Stoi), or the combined score (Comb). The
sum of co-occurrences of protein–protein interactions as determined by the STRING database, substrates phosphorylated by the same kinase
as determined by the PhosphoSitePlus database, or genes regulated by the same transcription factor as determined by the ENCODE database
in the network modules were used to determine the empirical probability density and the validation score for the inferred modules. The empirical
probability densities are visualized with color-coded solid lines and the validation scores for the inferred modules in color-coded dashed lines.
One dot in the boxplot represents one p-value for one dataset, the box the interquartile range, and the horizontal line the median value. The
datasets were acquired from published omics data. Red: correlation score; blue: stoichiometry score; gray: combined score. DMPA, de novo
multi-omics pathway analysis.
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to network modules of the same size. Additionally, the median
STRING score, which reflects the confidence of the interaction
based on the amount and type of evidence on the protein–
protein interaction, was consistently higher in the network
modules inferred with the combined score than in the ran-
domized network modules (supplemental Fig. S2). In the
phosphoproteome data, the assignment to network modules
modeled with the combined score indicated that the two
phosphorylation sites were controlled by the same kinase
more often than by random assignment. In the transcriptome
data, in turn, two transcripts in the same network module
modeled with the combined score were more likely to be the
target gene for the same transcription factor than randomly
chosen transcripts. This effect was similarly observed in
transcription factor target gene annotations acquired from
REMAP and Literature libraries from the ChEA3 database (28)
(supplemental Fig. S3). The network modules inferred with
only the correlation or stoichiometry score varied in their ability
to find reported molecular associations. The network modules
inferred with stoichiometry score were sufficient, although not
as consistent as the network modules inferred with the com-
bined score, in reflecting reported protein–protein interactions
in interactome data. However, the network modules inferred
with stoichiometry score failed to reproduce reported molec-
ular associations in phosphoproteome and transcriptome
data. The network modules inferred with the correlation score
were in 8 out of 10 cases able to capture known transcription
factor target gene relationships in the transcriptome data but
were insufficient in finding reported protein–protein in-
teractions and kinase substrate relationships in the inter-
actome and phosphoproteome data, respectively. The ability
of the network modules inferred with the combined score to
predict reported molecular associations from available
metabolomics and methylation data was additionally exam-
ined. The network modules inferred with the combined score
were able to predict metabolites involved in the same meta-
bolic reaction in metabolomics data and methylated chromatin
regions associated with the same trait in methylome data
(supplemental Fig. S4B). All in all, the network modules
inferred with the combined score consistently captured re-
ported molecular associations in all tested omics data, while
the modules inferred with other scores were found lacking in
reproducibility and performance across omics data types.

Validation of Network Module Combination to Pathways by
DMPA

Since signaling pathways are a combination of molecular
associations, they are similarly expected to be partially
conserved. The conservation of the pathways inferred with
DMPA was assessed. Network modules were inferred from a
multi-omics dataset with either correlation, stoichiometry, or
combined score and integrated into pathways with either
correlation, stoichiometry, or combined score. The median
score of the inferred pathways was assessed from a multi-

omics dataset that was not utilized for the initial pathway
inference. Multi-omics data from normal and cancer tissue
samples from the LinkedOmics (37) database was utilized. The
conservation was tested both between different paired cancer
and normal samples and between different cancer stages.
Utilizing the combined score for both network module and
pathway inference was the only tested combination that
demonstrated statistically significant conservation (Fig. 3A).
Utilizing the stoichiometry or correlation score for either
network module or pathway inference in turn produced
pathways that were not conserved across datasets.
To ensure that DMPA is also able to combine the inferred

network modules into pathways that reproduce experimentally
validated signaling pathways, a validation method was
devised. The sum of all co-occurrences of signaling molecules
in separate network modules reported to be part of the same
signaling pathway and combined into the same pathway by
DMPA was used as a validation score for the inferred path-
ways. The reference signaling pathways were downloaded
from the PathwayCommons database (32). Validation scores
calculated from randomly simulated and combined pathways
of the same size were used to derive probability densities to
estimate the statistical significance for the validation scores
derived from the pathways inferred with DMPA. The proba-
bility densities derived from randomly formulated pathways
are indicated with solid curves and the validation scores for
the pathways combined and inferred with different scores with
dashed lines in Figure 3B. The corresponding p-values drawn
from the cumulative probability densities of the randomized
pathways for the validation scores of the multi-omics path-
ways inferred with different scores are visualized in Figure 3C.
The pathways where the network modules were inferred and
integrated with the combined score consistently reproduced
associations represented in reported pathway annotations.
The second-best performers were the versions of DMPA
where the network modules were inferred with either the
stoichiometry score or the combined score and integrated into
pathways with the stoichiometry score. The correlation score-
based versions of DMPA had the worst performance. Taken
together, these results strongly imply that the DMPA can find
molecular associations and pathways that reflect previously
observed cell signaling pathways.

Validation of the Design Decisions of DMPA

To explore the validity of the design decisions of DMPA, the
effect of different design decisions of DMPA on the accuracy
of DMPA was examined as in Figure 2, B–E. Since the p-
values in many cases approached zero, the relative distance
of the validation score from the median value of the random-
ized distribution was used as a measure instead of the p-value
like in Figure 2, B–E. First, the effect of the choice to rank and
adjust the stoichiometry and correlation score on the number
of reported molecular associations in the inferred modules
was assessed. In both interactome and transcriptome data,
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the choice to rank and adjust the stoichiometry and correlation
score (combination, ranked) increased the number of reported
associations in the inferred molecular associations against the
version of the combination score where the unadjusted cor-
relation score and the inverse of the unadjusted stoichiometry
score were multiplied (combination, raw) (supplemental
Fig. S5A). In phosphoproteome data, the choice to rank and

adjust the correlation and stoichiometry had no significant
effect. Second, the effect of the design choice to find the
maximally scoring three-feature modules for each feature in
the data instead of a linear approach, where for each feature
only the maximally scoring feature is selected, was examined.
For both interactome and phosphoproteome data searching
the maximally scoring three-feature modules instead of the

A
B

C

FIG. 3. Validation of network module combination to pathways with DMPA. A, the conservation of correlation, stoichiometry, and
combined score in modules inferred with either correlation (Corr), stoichiometry (Stoi), or combined (Comb) score and integrated into pathways
with either correlation, stoichiometry, or combined score. One dot in the boxplot represents the median score between all modules of all inferred
pathways of a dataset that was not initially utilized for the pathway inference. The horizontal line represents the median value and the dashed line
the median score from randomized pathways. For statistical testing, two-tailed one sample t test against the theoretical median value 0.5 was
utilized. B and C, empirical probability densities simulated by randomizing the inferred modules into pathways of the same size and the cor-
responding p-values (C) for the validation scores of the pathways inferred with DMPA. Acetylation, methylation, proteomics, glycoproteomics,
phosphoproteomics, transcriptomics, and protein array data from LinkedOmics was utilized. The sum of all co-occurrences of signaling mol-
ecules in separate network modules reported to be part of the same signaling pathway and combined into the same pathway by DMPA was
used as a validation score for the inferred pathways. The PathwayCommons database was used as a source for the pathway annotations. One
dot in the boxplot represents a p-value for one dataset and the line the median value. The datasets were acquired from published multi-omics
data. The empirical probability densities are visualized with color-coded solid lines and the validation score for the inferred pathways in color-
coded dashed lines. Corr, Corr (dark red): modules inferred with correlation score, pathways integrated with correlation score. Comb, Corr (light
red): modules inferred with correlation score, pathways integrated with combined score. Stoi, Stoi (dark blue): modules inferred with stoichi-
ometry score, pathways integrated with stoichiometry score. Comb, Stoi (turquoise): modules inferred with stoichiometry score, pathways in-
tegrated with combined score. Comb, Comb (dark gray): modules inferred with combined score, pathways integrated with combined score.
DMPA, de novo multi-omics pathway analysis.
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single maximally scoring feature increased the number of
previously discovered molecular associations in the inferred
feature relationships (supplemental Fig. S5B). For tran-
scriptome data, the design choice had no significant effect.
Taken together, the results imply that the design decisions of
DMPA have mostly a positive effect or a neutral effect
depending on the examined omics data on discovering true
positives in the inferred molecular associations. To synthetize,
the effect of adhering to both design decisions increased the
number of reported associations in the inferred molecular
associations for all tested omics data types.

Sensitivity Analyses of the Parameters of DMPA

To assess the sensitivity of DMPA to parameter choice,
sensitivity analyses were conducted. First, the effect of the
parameter choice on the parameters that control the size of
the network modules (parameters 7 and 9, supplemental
Fig. S1) was examined with available interactome data
(supplemental Fig. S6). Settings where the module joining
controlled by these parameters were not allowed were tested
(supplemental Fig. S6A). The change in these parameters
affected the size and number of network modules but had no
negative effect on the number of reported associations in the
inferred modules against randomly modeled modules
(supplemental Fig. S6). This suggests that the parameters can
be safely adjusted if larger or smaller modules are desired
from the inference method.
Second, the effect of the parameter choice of the parame-

ters C and S that control the cut-off threshold of the combined
score was assessed in both available omics and simulated
data (Figure 1B, parameters 5–6 in supplemental Fig. S1). To
examine the effect of the parameter S choice on the number of
reported molecular associations in the inferred modules and
on the algorithm performance, published transcriptome data
was analyzed with different S parameter values. Different S
parameter values had a significant effect on the run time but
no adverse effect on the number of reported molecular as-
sociations in the inferred modules (supplemental Fig. S7). To
test the effect of the S parameter on the true positive and false
positive rate, DMPA was applied to normally distributed,
negative binomially distributed, and beta-distributed simu-
lated data (supplemental Figs. S8–S10). DMPA was able to
accurately discover the true modules among the randomly
modeled data from the simulated data. Some sensitivity to the
parameter S choice, however, was detected. Low parameter S
values increased the likelihood of false positives and dispro-
portionately high parameter S values increased the likelihood
of false negatives in the final inference. Features with a true
module assignment were, however, never misassigned by
DMPA. The false positives detected with low parameter S
values originated from the simulated pool that had no true
module assignment. The raw unadjusted correlation and
stoichiometry scores of the features that were not assigned
into network modules were examined and a significant

decrease in the maximum raw correlation and inverted raw
stoichiometry score was discovered for the features that had
no true module assignment (supplemental Fig. S11A). To this
end, a script to suggest values for the parameter S was
devised to help the user to correctly set the parameter S value
(supplemental Fig. S11B, suggest parameter values for mod-
ule and pathway inference function of DMPA). The script finds
the maximum correlation and inverted stoichiometry scores
for each feature and plots the density function that is fitted into
these values. The maximum correlation and inverted stoichi-
ometry scores for the features included in the analysis after
cut-off are indicated at each parameter S value.
The effect of the parameter C choice on the true and false

positive rate of DMPA was also examined in simulated data-
sets with different proportions of non-associated features in
the simulated datasets (supplemental Fig. S12). For datasets
for more than 300 features, the parameter C value was
discovered to always be optimal as 1. For datasets with less
than 300 features, the optimal C parameter value was based
on the proportion of non-associated features in the dataset.
To this end, the suggested parameter values for module and
pathway inference function was expanded to include recom-
mendations for parameter C values to help the user set the
optimal parameter value for the dimensionality of and pro-
portion of nonassociated features in their omics datasets.
Third, the sensitivity of DMPA to the parameter that controls

the zero-inflated version of the analysis was assessed. Zero-
inflated interactome data and non-zero-inflated tran-
scriptome data was analyzed both with the zero-inflated
(weighted stoichiometry score, parameter 4 in supplemental
Fig. S1) and non-zero-inflated (non-weighted stoichiometry
score) version of DMPA, and the number on reported molec-
ular associations in the inferred modules against randomly
modeled modules of the same size was estimated. In the zero-
inflated interactome data (over 30% missing values), the zero-
inflated version of the analysis significantly increased the
number of reported associations in the inferred modules
(supplemental Fig. S13A). In contrast, in the non-zero-inflated
transcriptome data (less than 25% missing values), the zero-
inflated version discovered fewer reported associations than
the non-zero-inflated version (supplemental Fig. S13B). In
conclusion, the choice of zero-inflated and non-zero-inflated
version of the analysis has a significant effect on the accu-
racy of DMPA and should be set based on the percentage of
missing values in the dataset.

Dataset Dimensionality Requirements of DMPA

To examine how the dimensionality of the omics datasets
impacts the performance of DMPA, extensive sensitivity an-
alyses with simulated datasets were conducted (supplemental
Fig. S14). The false positive and true positive rates were
assessed from datasets with varying feature set and sample
sizes and proportions of non-associated features in the
datasets. DMPA analyses with different C and S parameter
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values were additionally performed. Consistent performance
of DMPA was observed with sample sizes 10 or higher. With
lower sample sizes, DMPA had varied performance, and the
nature of the dataset significantly affected the accuracy of
DMPA. DMPA benefitted from higher parameter S values
when datasets with low sample sizes were analyzed. Due to
this observation, “the suggest parameters for module and
pathway inference” function was designed to offer parameter
value recommendations based on the dimensionality of the
omics dataset. Datasets with feature set sizes larger than 200
and sample sizes lower than 10 are not currently recom-
mended to be analyzed with DMPA. Similarly, consistent
performance of DMPA with datasets with feature set sizes
lower than 200 and sample sizes lower than 8 cannot be
guaranteed.

DMPA Outperforms Previous Approaches

To assess the performance of DMPA, DMPA was bench-
marked against relevant module discovery and multi-omics
integration methods. Transcriptome datasets were chosen
for the benchmarking of module discovery methods since they
allowed the comparison against regulatory network inference
methods that are specifically designed for gene expression
data. WGCNA (3), LOPC (5), and the DREAM4 challenge
winning regulatory network inference method GENIE3 (13)
were selected for comparison. Since LOPC returns network
edges instead of modules, a separate validation strategy was
devised to benchmark against LOPC which is detailed in the
Experimental Procedures section. For GENIE3, a module was
defined as the genes predicted to be controlled by the same
upstream gene. The number of reported associations in the
inferred modules and networks against randomly modeled
modules and networks was assessed from the transcriptome
modules and networks inferred with WGCNA, LOPC, GENIE3,
and DMPA as in Figure 2, B–E. Although all WGCNA, LOPC,
and GENIE3 were able to discover significantly more reported
molecular associations in the inferred modules than random
assignment, DMPA was the most consistent performer across
datasets and in most cases discovered more reported mo-
lecular associations than the other methods as indicated by
the lower p-values and higher relative distance from the
random median value (Fig. 4, A and B). Strikingly, a clear
difference in the performance of DMPA and the other tested
methods could be seen with datasets with low sample sizes.
DMPA seemed to display more discriminatory behavior
(smaller coverage) but higher accuracy (lower p-value and
higher relative distance from random median) with datasets
with low sample sizes. LOPC in turn was unable to analyze the
datasets with low sample sizes due to the high dimensionality,
n ≪ p problem (66) (NA in Fig. 4B).
To further assess the performance of DMPA and the other

module discovery methods with low sample sizes, the module
discovery methods were run with transcriptome datasets with
different sample sizes. The number of reported molecular

associations in the inferred modules against the randomly
modeled modules were examined. DMPA required datasets
with only six samples (3 control and 3 treatment samples) to
discover reported molecular associations while datasets with
over 30 samples were required by WGCNA and GENIE3
(Fig. 4C). We attempted to analyze zero-inflated interactome
data with WGCNA, GENIE3, and LOPC, but the current R
implementations of these approaches were unable to handle
the zero-inflated interactome data. DMPA, in contrast, has the
advantage of performing without the imputation of the missing
values for the zero-inflated data. These results imply that
DMPA is more flexible, has less limitations, and can discover
more reported associations than the tested module and
network discovery methods.
DMPA was additionally benchmarked against multi-omics

integration methods that are independent of prior knowl-
edge. DMPA was benchmarked against the closest discov-
ered analog methods, TransNet (40) and the multi-omics
version of WGCNA (18). TransNet aims to discover causal
links between two different omics datasets by first modeling
the omics datasets into correlation networks. TransNet then
proceeds by assigning dense subnetworks into modules, and
finally utilizes correlation to find the connecting nodes be-
tween the modules of the omics datasets. The multi-omics
version of WGCNA in turn applies correlation and hierarchi-
cal clustering to determine modules from each omics layer.
The modules are consecutively connected by the correlation
of their eigenvectors.
Published multi-omics datasets were analyzed with Trans-

Net, WGCNA, and DMPA, and the capacity of the inferred
pathways to represent reported signaling pathways was esti-
mated as in Figure 3, B and C. The ability to connect inferred
modules into signaling pathways was also estimated by a
version of the validation method utilized in Figure 3, B and C
where only the connections but not the modules themselves
were randomized. As per its aim, TransNet was able to
significantly discover connections between the modules that
represented reported cell signaling pathways, but the modules
themselves were not representative of cell signaling pathways
as suggested by the lack of a significant p-value from the
validation method that also randomized the modules (Fig. 4D).
The multi-omics version of WGCNA, in turn, was only able to
discover reported signaling pathways and connections when
transcriptome and proteome data was analyzed (Fig. 4D).
DMPA, however, was able to achieve a significant p-value with
both versions of the validation method for all tested datasets
indicating that the pathways inferred with DMPA are closer to
reported cell signaling pathways than the outputs of TransNet
and the multi-omics version of WGCNA.

Case Study: DMPA of Cleaved TYRO3 Signaling in
Melanoma Cells

To demonstrate the performance of DMPA with a freshly
acquired multi-omics dataset, an in-house multi-omics dataset
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Dataset size
Method WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA
P-value 0.617 0.980 0.000 0.052 0.000 0.027 0.025 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000
Distance from randomized median -0.0062 -0.0087 0.0706 0.0426 0.0273 0.0314 0.0647 0.0778 0.0748 0.0566 0.0302 0.0602 0.1015 0.1082 0.0777
Transcripts included in the final modules (%) 100.00 99.64 65.13 100.00 90.81 98.82 100.00 85.62 91.91 100.00 69.13 85.46 100.00 78.30 86.40
Run time (min) 0.63 1.17 12.82 0.29 25.23 26.93 0.23 37.06 28.59 0.52 56.43 60.75 0.54 74.40 154.29

Dataset size
Method WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA WGCNA GENIE3 DMPA
P-value 0.716 1.000 0.039 0.000 0.000 0.000 0.294 1.000 0.022 0.000 0.000 0.000 0.025 0.000 0.000
Distance from randomized median -0.0387 -0.0983 0.0588 0.0882 0.0827 0.1013 0.0097 -0.2200 0.0310 0.1094 0.0886 0.0937 0.0497 0.0261 0.0945
Transcripts included in the final modules (%) 100.00 99.37 96.35 100.00 90.38 97.02 100.00 70.79 61.33 100.00 80.29 98.09 100.00 95.39 97.35
Run time (min) 0.13 71.83 4.82 0.99 184.45 112.39 1.32 2.76 10.40 1.06 36.34 164.09 0.53 116.49 73.92

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Dataset 7 Dataset 8 Dataset 9 Dataset 10

n: 6 transcripts: 3077 n: 91 transcripts: 1697 n: 104 transcripts: 2003 n: 105 transcripts: 2345 n: 100 transcripts: 3102

Dataset 6
n: 346 transcripts: 958 n: 188 transcripts: 3119 n: 12 transcripts: 3119 n: 62 transcripts: 3187 n: 175 transcripts: 2601

4 8 16 32 64 128
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Method LOPC DMPA LOPC DMPA LOPC DMPA LOPC DMPA LOPC DMPA
P-value NA 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.021 0.000
Relative distance from random median NA 0.085 0.057 0.131 0.058 0.190 0.094 0.278 0.072 0.234
Transcripts included in the network (%) NA 65.13 27.87 98.82 22.97 91.91 29.47 97.88 4.80 86.40
Run time (min) NA 12.82 347.70 26.93 497.40 28.59 4.67 6.29 28.78 154.29

Method LOPC DMPA LOPC DMPA LOPC DMPA LOPC DMPA LOPC DMPA
P-value 0.260 0.000 0.000 0.000 NA 0.000 0.000 0.000 0.000 0.000
Relative distance from random median 0.250 0.386 0.906 0.385 NA 0.116 0.275 0.725 0.157 0.205
Transcripts included in the network (%) 16.28 96.35 3.49 97.02 NA 61.33 20.93 98.09 44.60 97.35

NARun time (min) 30.84 4.82 90.16 112.39 10.40 18.72 164.09 107.14 73.92

Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
n:6 transcripts: 3077 n:91 transcripts: 1697 n:104 transcripts: 2003 n:105 transcripts: 1086 n:100 transcripts: 3102

n:346 transcripts: 958 n:188 transcripts: 3119 n:12 transcripts: 3119 n:62 transcripts: 3187 n:175 transcripts: 2601
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FIG. 4. The performance of DMPA compared to previous methods. A, the performance of DMPA against WGCNA and GENIE3 in module
discovery. The statistical significance of the number of reported transcription factor target gene relationships and percentage of transcripts
included in the inferred modules was assessed in addition to the runtime. Transcriptome data from ArchS4 database was used for bench-
marking. B, the performance of DMPA against LOPC in network discovery. The statistical significance of the number of reported transcription
factor target gene relationships and percentage of transcripts included in the inferred networks was assessed. Transcriptome data from ArchS4
database was used for the benchmarking. NA: LOPC unable to infer a network from the dataset due to the high-dimensionality problem. C, the
performance of DMPA against WGCNA and GENIE3 in module discovery with transcriptome datasets of different sample sizes. The statistical
significance of the number of reported transcription factor target gene relationships in the inferred modules was assessed. Mean ± SEM. D, the
performance of DMPA against TransNet and WGCNA in pathway discovery. Multi-omics data was analyzed with both methods and the number
of reported associations in pathway annotations from the pathway Commons database in the inferred pathways was assessed. The statistical
significance of the number of the reported associations in the inferred pathways was determined with two different statistical methods, where
either only the connections between the modules or the whole pathways were randomized. Mean ± SEM. DMPA, de novo multi-omics pathway
analysis; LOPC, low-order partial correlation; WGCNA, weighted correlation network analysis.
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from the cleavage-dependent signaling of the receptor tyrosine
kinase TYRO3 was acquired. To this end, a stable TYRO3
knock-down WM-266-4 cell line was created and the cells
were transfected with WT and cleavage-resistant variants of
TYRO3 (ΔGS, ΔADAM) or control vector (supplemental
Fig. S15A). The ΔGS variant, resistant to proteolytic cleavage
by the gamma-secretase complex, has been described before
(67). The ΔADAM variant, resistant to cleavage by ADAM, was
created by predicting the ADAM17 of ADAM10 cleavage sites
of TYRO3 with a 0th order Markov chain and mutating the key
residues in the predicted cleavage sites. The ability of the
ΔADAM variant to still act as a functional receptor was vali-
dated by examining its cleavage (supplemental Fig. S15B),
autophosphorylation (supplemental Fig. S15C), and ability to
activate a substrate with Western blot analyses (supplemental
Fig. S15D). The expected effect of the mutations in the ΔADAM
variant on the subcellular location of TYRO3 was examined
with immunofluorescence (supplemental Fig. S15E). The ana-
lyses strongly suggested that the ΔADAM variant was indeed a
functional receptor that was more resistant to cleavage than
the WT receptor. Interactome, phosphoproteome, proteome,
and transcriptome data were acquired from the cells
expressing the WT or cleavage-resistant variants of TYRO3 or
the control vector (supplemental Fig. S15F). A differential
expression analysis was conducted to discover the differential
interactome, phosphoproteome, transcriptome, and proteome
associated with the full-length or the cleaved ICD of TYRO3
(supplemental Figs. S16–S21, and supplemental Table S6–S9).
The differentially regulated signaling events associated with

the expression of full-length TYRO3 or the cleaved TYRO3
ICD were analyzed with DMPA first to extract network mod-
ules. The DMPA discovered 24 previously undescribed inter-
actome, 110 phosphoproteome, 46 transcriptome, and 130
proteome modules that associated with the expression of full-
length TYRO3 (supplemental Fig. S22, and supplemental
Table S2). The expression of the cleaved TYRO3 ICD in turn
was associated with 53 new interactome, 84 phosphopro-
teome, 45 transcriptome, and 136 proteome modules
(supplemental Fig. S23, and supplemental Table S2). The
inferred modules were further combined with the DMPA into
pathways, resulting in a total of 51 and 46 unique signaling
pathways associating with the signaling stimulated by the full-
length and the released ICD of TYRO3, respectively
(supplemental Table S1).

Enrichment Analyses for Modules and Pathways Inferred
With the DMPA

To contextualize the function of the modules and pathways
inferred with DMPA, an enrichment analysis to predict the
upstream transcription factor, upstream kinase, subcellular
location, and the biological process for each transcriptome,
phosphoproteome, and interactome module or pathway,
respectively, was devised (see Experimental Procedures for

details). The predicted upstream transcription factors, ki-
nases, and subcellular locations for the transcriptome,
phosphoproteome, and interactome modules are provided in
supplemental Tables S3–S5. To ensure the validity of the
upstream transcription factor and kinase predictions, the
predicted transcription factors and kinases were compared
to those reported to be regulated by TYRO3. Several tran-
scription factors reported to be regulated by TYRO3 were
predicted to regulate the inferred transcriptome modules,
such as STAT3 (68), MYC (69, 70), and MITF (71)
(supplemental Table S3). Furthermore, the most common
transcription factor predicted to regulate the transcriptome
modules associated with TYRO3 signaling was MYC, with
the respective gene amplified in the WM-266-4 cell back-
ground (72). Similarly, several kinases reported to be asso-
ciated with TYRO3, such as AKT (73, 74), mTOR (73, 75),
GSK3 (74, 75), MEK1 (75), PKC (75), and CAMK2 (75), were
predicted to regulate the phosphoproteome modules asso-
ciated with full-length and cleaved ICD of TYRO3
(supplemental Table S5). The predicted subcellular localiza-
tions of the interactome modules of full-length and the
cleaved ICD of TYRO3 (supplemental Table S4), in turn, were
compared to the reported localization difference between the
WT and the ΔGS and ΔADAM variants of TYRO3
(supplemental Fig. S15E) (67) to ensure the validity of the
predicted subcellular locations. The cleavage-resistant vari-
ants of TYRO3 have lower nuclear localization compared to
the WT TYRO3 (supplemental Fig. S15E) (67). Due to this
observation the interacting proteins of the cleaved ICD of
TYRO3 are expected to be localized more in the nucleus and
less in the plasma membrane than those of the full-length
TYRO3. The differences in the predicted localizations of the
interactome modules of full-length and cleaved ICD of
TYRO3 correlated with the difference in the subcellular
localization of full-length and cleaved ICD of TYRO3
(supplemental Table S4). Thirteen out of the fifty four (24%)
cleaved ICD interactome complexes were predicted to
localize into the nucleus, while nuclear localization was pre-
dicted for only 2 out of the 21 (8%) interactome modules of
the full-length TYRO3 (p = 0.032 against frequency of nuclear
assignment in the interactome complexes of cleaved TYRO3
ICD). Moreover, 8 out of the 21 (33%) interactome complexes
of full-length TYRO3, but only 5 out of the 54 (9%) inter-
actome modules of the cleaved ICD of TYRO3, were pre-
dicted to localize into the plasma membrane (p < 0.0001
against frequency of plasma membrane assignment in the
interactome modules of full-length TYRO3). Both the inter-
actome modules of full-length TYRO3 (5 out of 21; 20%) and
the interactome modules of TYRO3 ICD (11 out of 54, 20%)
were equally predicted to be localized in the cytoskeletal
structures (p = 0.0025 for full-length TYRO3 and p < 0.0001
for TYRO3 ICD against frequency of cytoskeleton assign-
ment in randomly modeled interactome modules).
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The summary of the predicted functions for each pathway
associated with the signaling of full-length and ICD of TYRO3
is displayed in Figure 5 and supplemental Fig. S24
(supplemental Table S10). The functional enrichment anal-
ysis of the modeled pathways of full-length and ICD of TYRO3
was able to identify unique pathways associated with various
cellular processes including ones involved in the pathogenesis
of cancer. A significant difference was noted in the number
and direction of pathways related to growth and cell cycle, cell
adhesion and motility, cell morphology, cell death, and im-
mune response between the cells producing the full-length
versus the ICD of TYRO3 (Fig. 5). These findings indicate
that a differential response to these functions could be
enacted by the full-length and cleaved ICD of TYRO3.

Functional Validation of the Functional Enrichment
Analyses of the DMPA

To validate the ability of function enrichment of the DMPA to
predict differential cellular functions based on molecular data,
we randomly selected three cellular functions predicted to be
inversly regulated by the signaling pathways associated with
the cleaved ICD or the full-length TYRO3. First, to assess
proliferation induced by the cleaved ICD or the full-length
TYRO3, the growth of WM-266-4 transfectants was
analyzed using live-cell imaging (Fig. 6A). The function pre-
diction of the ICD pathway 31 and the full-length pathways 19
and 10 (Fig. 5, A and B) indicated that the cleavage and
release of the ICD of TYRO3 would promote cellular growth,
while the expression of the full-length TYRO3 would reduce
proliferation. Indeed, the WM-266-4 cells expressing WT
TYRO3 proliferated significantly faster than the vector control
cells or cells expressing the cleavage resistant ΔGS or the
ΔADAM variants of TYRO3 that produce less cleaved ICD
(Fig. 6A).
As another read-out to validate the functional enrichment

analyses of the pathways inferred with DMPA, the adhesion
rate of the WM-266-4 transfectants to fibronectin-coated
wells was investigated by real-time cellular impedance mea-
surement (Fig. 6B). As predicted by the ICD pathway 10 and
the full-length pathway 20 (Fig. 5C), the cells expressing WT
TYRO3 adhered to fibronectin with a greater affinity than
vector control cells or cells expressing either the ΔGS or
ΔADAM variant of TYRO3 (Fig. 6B).
Finally, the two-dimensional cellular morphology of the WM-

266-4 transfectants was examined from thresholded confocal
images with the ImageJ MorphoLibJ plugin (Fig. 6C). As
indicated by the ICD pathway 46 and the full-length pathway 9
(Fig. 5D), the cells expressing WT TYRO3 exhibited distinct
morphology from the vector control cells or cells expressing
either the ΔGS or ΔADAM variant of TYRO3 (Fig. 6C). The
morphological difference was captured by the convexity
measure (the ratio between the cell area and its convex area),
the lower value of which suggests a shape with more

protrusions. A greater amount of cell protrusions in the cells
expressing WT TYRO3 was also predicted by the DMPA (ICD
pathway 1 in Fig. 5D). Furthermore, the WM-266-4 cells
expressing WT TYRO3 or either of the TYRO3 mutants
demonstrated less circular cell shape than the vector control
cells, indicating that the full-length TYRO3 additionally regu-
lates cell morphology as suggested by the full-length pathway
9 (supplemental Fig. S25). Taken together, these validation
experiments suggest that the function enrichment of the
pathways modeled with the DMPA can predict both the
function and the direction of the function from purely molec-
ular multi-omics data.

DISCUSSION

The increased demand for a ground-up multi-omics cell
signaling pathway inference method motivated us to create
DMPA. The DMPA is based on the calculation and combina-
tion of two robust metrics of molecular association, the cor-
relation and stoichiometry score. The inferred molecular
associations are consequently modeled into network modules
in the DMPA by following the nearest neighbor principle. The
DMPA consistently found relevant biological associations in
both published and freshly acquired multi-omics data. The
DMPA showed consistent performance and the combined
score-based networks outperformed correlation-based
network models in all tested data types. DMPA out-
performed previous methods in both module and pathway
discovery.
The advantages of the DMPA include its independence on

previous knowledge, robustness, which makes it easily scal-
able to other omics data types, low computational demand,
and ability to work with low sample sizes. DMPA was
designed to handle the heterogeneity of multi-omics data and
therefore can handle more diverse data types than the previ-
ous methods such as WGCNA and GENIE3. Indeed, WGCNA,
LOPC, and GENIE3 were unable to make inferences from
zero-inflated interactome data. WGCNA, LOPC, and GENIE3
were initially developed to infer gene regulatory modules and
networks from gene expression data. DMPA, however, was
able to discover reported molecular associations more
consistently than WGCNA, LOPC, and GENIE3 from gene
expression data and outperformed the other methods in 6 out
of 10 datasets. The dimensionality of the omics dataset was a
less significant limitation to DMPA, since DMPA was able to
infer reported molecular relationships from datasets with small
sample sizes (n = 6-30). WGCNA and GENIE3, in contrast,
were able to infer molecular relationships only from gene
expression datasets of sample sizes 30 or more. Datasets of
sample sizes 10 or more, however, are recommended for
optimal DMPA performance.
Previous multi-omics integration methods have been

focused mostly on feature extraction and matrix factorization
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FIG. 5. The functional categorization of the selected full-length and cleaved TYRO3 pathways inferred with the DMPA. The predicted
function of a subset of the multi-omics pathways of the full-length and the cleaved intracellular domain (ICD) of TYRO3 inferred with DMPA.
Signaling pathways predicted to regulate the cell growth (A), cell cycle (B), cell motility and adhesion (C) and cytoskeleton organization (D) are
visualized. The bars represent the median pseudolog2 fold change of the abundance of all the proteins, transcripts, and phosphorylated res-
idues in the pathway against the control condition. For a full list of predicted functions for the pathways of full-length and cleaved ICD of TYRO3,
see supplemental Fig. S21. For further details on the pathways, see supplemental Tables S1 and S2. The cell behavior predicted by the
pathways surrounded with the dashed line is examined in Figure 6, A–C. The pathways highlighted with solid lines are visualized in Figure 6, D
and E. DMPA, de novo multi-omics pathway analysis.
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strategies. While the inferred latent factors have been found
accurate in stratifying samples into clusters and can be pre-
dictive of clinical outcome, there is little evidence that the
discovered factors would represent signaling pathways in the
cell (15, 16). Here we provide evidence that the pathways

inferred with the DMPA reflect previously described signaling
pathways. DMPA was benchmarked against two previously
proposed prior data independent multi-omics integration
methods TransNet and multi-omics WGCNA. Of these three
methods, DMPA was the only one that was able to discover

A

B

D

E

C

FIG. 6. Functional validation and composition of the selected pathways of full-length and cleaved ICD of TYRO3. A, proliferation of WM-
266-4 transfectants was measured with live-cell imaging. For statistical testing, the non-parametric Friedman 2-way ANOVA and the Dunn’s
multiple comparison test was utilized. The symbols represent the mean and the whiskers the SD of the values. A representative plot from 1 out of
3 independent replicate experiments is shown (n = 6). B, real-time adhesion of WM-266-4 transfectants was explored with the xCELLigence cell
impedance measurement system. For statistical testing, the parametric 2-way ANOVA and the Dunn’s multiple comparison test was utilized. The
symbols represent the mean and the whiskers the SD of the values. A representative plot from 1 out of 4 independent replicate experiments is
shown (n = 5). C, the morphology of WM-266-4 transfectants was analyzed from thresholded confocal images taken in plane with the plasma
membrane with MorphoLibJ plugin of ImageJ. For statistical testing, the non-parametric Kruskal-Wallis ANOVA was utilized. The post hoc
analyses were conducted with the Mann-Whitney U test and the resulting p-values were corrected with the method of Benjamini, Krieger, and
Yekutieli. Convexity: the ratio between the convex perimeter and the real perimeter. One dot represents 1 cell and the horizontal line the median
value. Combined results from four independent experiments are shown. D and E, visualization of the cell motility pathway 29 of cleaved TYRO3
ICD (D) and the cytoskeleton organization pathway 9 of full-length TYRO3 (E). The median expression of all the transcripts, proteins, or
phosphorylated residues in the indicated samples and network modules is presented in the heatmaps. Individual complexes are separated by
circles. The inferred network modules are identified by a letter combination (INT for interactome, PHOS_ST for serine/threonine phosphopro-
teome, PHOS_Y for tyrosine phosphoproteome, TRANS for transcriptome, PROT for proteome) and a number. Predicted transcription factors,
kinases, and subcellular locations are indicated with italic letters under the complex identifier. Control: an empty plasmid that does not encode
TYRO3 has been transfected to cells. ΔGS: mutation in the γ-secretase cleavage site. ΔADAM: mutation in the predicted ADAM 12/17 cleavage
site. ICD, intracellular domain.
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previously reported cell signaling pathways. This is partly
because neither TransNet nor WGCNA have been initially
developed for signaling pathway inference, which may indi-
cate that DMPA is the first prior information independent
multi-omics integration method designed for this purpose.
Since DMPA is based on the inherent variation between

samples in the omics data, the quality of the omics data limits
the analysis. High technical variation, significant number of
missing values, or low sample size can lead to loss of model
accuracy. The nonparametric formulation and a zero-inflated
version of the stoichiometry score were devised to partly
overcome two of these limitations. Since the correlation,
stoichiometry, and combined scores are ranked and thus
dependent on the choice of the features included in the
dataset, a choice for the combined score cut-off threshold and
parameter S and C choice can also significantly affect the final
inferred pathways. A script to help the user select optimal C
and S parameter values was created to ensure optimized
combined score cut-off threshold choice for most datasets.
For accurate inference of the multi-omics pathways with
DMPA, the multi-omics data should be acquired from the
same samples. DMPA does not support combination of multi-
omics data that have been acquired from different samples
even though they would represent the same tissue type or cell
line. DMPA was created to find minimally connecting modules
and pathways for all features that have a true association and
therefore was not designed to discover all possible true mo-
lecular associations in the dataset. Indeed, only the most
strongly associated feature connections for most features are
likely to be uncovered by the DMPA. Additionally, the DMPA
was designed to only uncover linear relationships, and the
directionality of the relationships is similarly not currently
solved by the DMPA.
Here a new association measure, the stoichiometry score

was introduced. While the stoichiometry score overall did have
poorer performance than the combined score, the stoichi-
ometry score showed promise as an association measure for
mass spectrometry–derived interactome data. In some data-
sets the stoichiometry score was able to discover more re-
ported molecular associations of high confidence than the
combined score indicating that there may be benefits to solely
using the stoichiometry score as an association measure for
certain types of interactome datasets. More research, how-
ever, is needed to define these datasets. Combining the
stoichiometry score with correlation produced a more
consistent molecular association measure, the combined
score. Here, evidence was provided that the combined score
indeed can predict molecular association in omics datasets.
We acquired multi-omics data from the cleavage-resistant

and WT TYRO3 variants and utilized the DMPA to shed light
on the unknown cleavage-associated signaling pathways of
TYRO3 in melanoma cells. In addition to signaling as a full-
length receptor, TYRO3 has been proposed to undergo
regulated intramembranous proteolysis by sequential

proteolysis by the gamma-secretase complex followed by
cleavage by an ADAM protease, releasing a soluble ICD with
potential signaling activities (67). The DMPA discovered a total
of 51 and 46 differential unique signaling pathways for the full-
length TYRO3 and the cleaved TYRO3 ICD, respectively. An
enrichment analysis to infer the biological process the path-
ways were involved with was also devised. A difference in the
number and the direction of the pathways associated with
growth and cell cycle, cell motility and adhesion, immune re-
sponses, chromosome organization, cell death, and cell dif-
ferentiation were observed between the full-length and
cleaved TYRO3 ICD. Many of these functions may be critically
involved, for example, in the progression or therapeutic re-
sponses in melanoma. For example, TYRO3 has been impli-
cated in the proliferation, tumorigenesis, chemoresistance,
and motility of melanoma cells (71, 76–78). Validation experi-
ments confirmed that the DMPA with the function prediction
was able to accurately predict both the function and the di-
rection of the function of the cells expressing either WT or
cleavage-resistant variants of TYRO3. These findings also
represent the first comprehensive characterization of signaling
pathways stimulated by the gamma-secretase–released ICD
of a receptor tyrosine kinase as compared to the canonical
signaling via the full-length receptor.
The DMPA segregates all signaling events into pathways

independent on the amount of previous knowledge on the
feature. This aspect is crucial in the discovery of novel
signaling modules. Since DMPA can predict molecular asso-
ciations, it can predict upstream transcription factors of tran-
scripts, kinases of phosphorylation sites, and subcellular
locations of proteins in the modules, for which these regula-
tors and subcellular locations are unknown. Similarly, the
DMPA can predict connections to biological functions for
proteins, transcripts, or post-translationally modified proteins
in the pathways for which no previous connection to the
biological function has been discovered. The pathways infer-
red with DMPA can be re-entered into DMPA to acquire super
pathways and thus broader connections between the
modeled pathways can additionally be discovered with the
DMPA.
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