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Abstract: Control performance assessment is one of the most important components of
control assets monitoring. In the past decades, many different data-based approaches have been
presented to assess control performance. Due to the high number of control loops for production
industries, the methods requiring less parameters and less priori information became popular
in industrial use. Detrended Fluctuation Analysis (DFA) is one of these methods, requiring
only closed loop data and a pair of segment length to estimate Hurst exponent based control
performance. However, the selection of segment lengths plays an important role in estimation,
especially for oscillating control loops. In this paper, we have proposed an additional step (i.e.
a step zero) to DFA to estimate control performance. This step uses an autocorrelation based
and robust oscillation detection and characterization method to identify the oscillation period.
Then, the calculated period is used to select the minimum segment length which leads more
robust and precise estimation of control performance based on DFA. The proposed method
has been applied and tested on several industrial control loops. The comparisons of the results

between two approaches are given.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

There has been a great interest in the monitoring of con-
trol performance as the number of industrial controllers
increased rapidly. In general, a typical process plant has
vast amount of control loops ranging from hundreds to
thousands. Unfortunately, many of these control loops
have not been tuned after commissioning. Although most
of the plants have dedicated control engineers to maintain
these control loops, according to a recent survey conducted
among different plants in different industries and even in
different continents, a typical control engineer is responsi-
ble for 450 control loops in average (Bauer et al., 2016).
Industrial experience shows that each control loop requires
approximately 1-2 hours of rigorous examination of man-
ual work by a control engineer. In most of the cases, only
trending the process data is not enough. Control engineers
might need to do some tests to see if the control loop, for
example, is able to track the set-point changes or robust
to disturbances. Considering the number of components in
a typical control loop (control element, controller, trans-
mitter, process etc.), it can be clearly said that assessing
control performance is the fundamental need but it does
not solve the problem by itself. Besides, diagnostics of
low performance plays an important role; since control
engineers need to know the root-cause before preparing to

fix the low performance. The most common reasons of low
control performance in process industries are inappropri-
ate controller tuning, inappropriate control structure de-
sign, control valve problems (corrosion, wear, stiction etc.),
process dynamics, sensor faults, changing process gains,
interactions between loops (Blevins, 2012). Unfortunately,
some of these problems reveal themselves in different shape
of fingerprints. For example, control valve problems and
inappropriate controller tunings reveal themselves as os-
cillations in process data and in many cases, it is not easy
to differentiate them easily by visual inspection (Jelali,
2013). Then, 1-2 hours of examination becomes days or
even months for average 450 loops for a control engineer.
This clearly states the need of robust, non-destructive and
practical performance assessment methods.

Fortunately, the first studies about control performance
assessment have been started quite earlier. The most fun-
damental assessment strategy is to compare the actual
performance with a benchmark. Hugo (2001) lists the
possible benchmarks as: perfect control (exactly zero vari-
ance in control output), best possible non-linear control,
minimum variance control, best possible MPC control,
best possible PID control and open loop control. Among
all,; in the process control community, the most popular
benchmark is minimum variance control (MVC). It was
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first developed by Astrém (1970) as an optimal control
solution. Later, Harris (1989) developed this idea and used
it as a benchmark for single-input single-output (SISO)
controllers. Shortly after that, Desborough and Harris
(1992) improved the idea and presented how to assess
the performance of univariate feedback control. Ever since
that, the method became like an industrial standard to
measure the base layer control performance. There are
several features of this method which led it to become
popular. First, it does not require any plant tests. In other
words, routine closed loop process data is enough. Second,
the calculated performance index is bounded between 0
and 1. When the index gets closer to 1, it means that the
actual performance is close to that of theoretical minimum
variance controller. This feature also makes it easier to
compare performances of different controllers. Third, it
is easy to calculate and does not require much priori
information, only process delay is enough. Fourth and final
is that, there are not many parameters to be chosen, only
the order of ARX model is enough, which is also quite easy
to determine.

There are many different and successful applications of
the study presented by Desborough and Harris (1992).
The most-known application is conducted by Paulonis and
Cox (2003) covering 14000 PID controllers in 40 plants
at 9 sites worldwide. Another interesting application is
implemented by Torres et al. (2006) covering 700 control
loops belonging to 12 different companies (petrochemi-
cal, pulp and paper, cement, chemical, steel and mining).
These applications showed how the work of Desborough
and Harris (1992) is robust and easy to estimate the per-
formance of industrial controllers. Despite these successful
applications, it is obvious that in many cases, time delays
of processes are not readily available (Jelali, 2006). Even
though there are many different methods to estimate the
time delays of processes such as presented by Bjorklund
and Ljung (2003), true process delay estimation is not a
trivial task.

A relatively recent study published by Srinivasan et al.
(2012) have presented a different approach to this problem.
They have used Hurst exponent estimated by detrended
fluctuation analysis (DFA), which is a well-known index in
fractal analysis, to assess the control performance without
any priori information. Similar to MVC based control per-
formance assessment, DFA utilizes closed loop operating
data. Hurst exponent of that data is calculated with a pre-
defined minimum and maximum segment length. Then,
calculated Hurst exponent is transformed into controller
performance index with a certain correlation. Srinivasan
et al. (2012) showed that DFA based control performance
assessment provides almost same results with MVC based
assessment along with no requirement of defining the time
delay of the process. This makes DFA easier to apply
for many controllers and reduces the priori requirements
only to parameter selection, the minimum and maximum
segment lengths. Especially in case of oscillatory process
data, DFA based performance assessment is known to
be more sensitive to segment length selection (Srinivasan
et al., 2012).

The motivation of this paper is to increase the robustness
of DFA based performance assessment. For that purpose,

we propose an additional step, a step zero, to DFA cal-
culation steps to choose the minimum segment length
accordingly. In step zero, an oscillation detection method,
developed originally by Thornhill et al. (2003), is applied
to the closed loop controller data to check for oscillation
and if any, to determine its period. Then, the estimated
period and the regularity of the oscillation are used to
define the optimal minimum segment size of the DFA. This
provides significant robustness to DFA based performance
assessment. With this improvement, the proposed method
can be fully automated without any concerns of sensitivity.

The outline of the paper is as follows. In Section 2.1, a
brief introduction to Hurst Exponent and DFA is given.
Then, in Section 2.2, the use of DFA in performance
assessment is described. Later, Section 2.3 explains the
difficulties of estimating DFA based performance in the
existence of oscillations. After that, in Section 2.4, the
oscillation detection method introduced as the step zero
is described. Then, Section 3.1 presents our modified
approach to estimate DFA based control performance.
Finally in Section 3.2, the results of the application to
real industrial control loop data are given.

2. PERFORMANCE ASSESSMENT AND
OSCILLATION DETECTION

2.1 A Review of Hurst Exponent and Detrended Fluctuation
Analysis (DFA)

Hurst exponent is widely used as a metric to measure the
long-term memory of time series. It was first developed by
Hurst (1951) as an outcome of a project of determining the
optimum dam size of Nile river. Later, it became one of the
fundamental methods of fractal geometry. There have been
many successful applications of Hurst exponent in stock
market analysis (Carbone et al., 2004; Matos et al., 2008;

Bui and Slepaczuk, 2022), dam construction (Hurst, 1951;
Li et al., 2015), meteorology (Rehman and Siddigi, 2009;
Chandrasekaran et al., 2019; Fu et al., 2022), material
science (Wawszczak, 2005; Martinez et al., 2013; Duan
et al., 2022), bio-statistics and bio-engineering (Peng et al.,
1994; Chen et al., 2013; Didgenes Pinto et al., 2022).

In fractal analysis, a self-similar process holds y.(k) =
a®y(k/a), where a is the scaling factor of x-axis, and a® is
the scaling factor of y-axis. Then, the exponent « is called
as the self-similarity parameter or Hurst exponent (Srini-
vasan et al., 2012). There are several methods to estimate
a, such as rescaled range (R/S) analysis (Mandelbrot and
Wallis, 1968), periodogram regression (Geweke and Porter-
Hudak, 1983), wavelet analysis (Simonsen et al., 1998) and
detrended fluctuation analysis (DFA) (Peng et al., 1992).
In this paper, DFA is used to estimate «. The most crucial
property of «, which is also utilized in control performance
assessment, is:

«a < 0.5 — the data is anti-correlated

a ~ 0.5 — the data is uncorrelated (white noise)
«a > 0.5 — the data is correlated

a ~ 1.0 — the data is pink noise

a > 1.0 — the data is non-stationary

a ~ 1.5 — the data is Brownian noise
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Having this property of «, it becomes possible to measure
the stationarity of the signals. Peng et al. (1992) described
the steps to estimate o with DFA as:

(1) Given signal y; is mapped to a self-similar process
Y (k),
k—1
Y(k) = (i) - 9), (1)
i=0
where g is the mean of y;, £k = (0,1,..., N — 1) and N
being the total number of samples.
(2) The integrated time series in Eq. 1 is divided into
segments of equal length n.
(3) For each segment, a linear least squares fit is applied.
(4) Each segment is detrended with the linear fit obtained
in step 3, where Y,,(k) becomes the y-coordinate of
the linear fit.
(5) The root-mean-square (RMS) fluctuation of the inte-
grated and segmented data is calculated,

N—

D D (R A5 C)

k=0

=

F(n) =

where F'(n) is the RMS value for segment size of n.

(6) Steps from 2 to 5 are repeated for different segment
sizes of n = (Smin, Smin + 1, .-+, Smax — 1, Smax) Where
Smin 18 minimum and Sp.c is maximum segment
length.

(7) The log-log plot of the root-mean-square F'(n) vs. the
segment size n (also known as DFA plot) is expected
to yield a straight line. The slope of that line is the
Hurst exponent, «.

2.2 Use Hurst Exponent for Performance Assessment

DFA is a method easy to apply and interpret for estimating
Hurst exponent. Later, the study of Srinivasan et al. (2012)
showed that there is a strong correlation of Hurst exponent
with the control performance. In their work, N being the
number of the total samples, it is proposed to choose
Smin = 10 and Spax = N/4. Then, based on the estimated
Hurst exponent «, they have proposed a performance
measure similar to MVC benchmark, bounded between 0-
1. In the work of Desborough and Harris (1992), it was
stated that as the performance index gets closer to 1, the
controller can be said to be close to MVC benchmark.
Similar to MVC, DFA based performance C'PI (controller
performance index) was defined as (Srinivasan et al.,
2012):

2a, if @ <0.5,

CPI:{L5—m if a > 0.5. (3)

Later, this idea was applied to set-point tracking aimed
PID controllers by Pillay and Govender (2014). In their
approach, the control error signal has been used to es-
timate the Hurst exponent. Several simulation examples
were provided under minimum variance control, sluggish
control and oscillatory control.

a=0.236 ® Fn) DFA

crossover point
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n

Fig. 1. Sinusoidal Signal with Period of 100 samples/cycle
(Smax = 2000)
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Fig. 2. Sinusoidal Signal with Period of 100 samples/cycle
(Smax = 160)

2.8 Crossover Phenomena of DFA and Its Effect on
Performance Assessment

Despite the fact that DFA based Hurst exponent provides
a performance measure aligned with MVC benchmark,
the selection of Sy, and Spax IS quite important. Hu
et al. (2001) presented an excellent work discussing the
effects of different trends on DFA. They have applied DFA
to different signals and showed the trends of the RMS
fluctuations. One observed phenomena is the crossover.
Let’s consider a pure sinusoidal signal with a period of
100 samples/cycle and 8000 data points, y(t) = sin(27 x
0.01 x t). Its DFA plot is given in Fig. 1.

It is quite obvious that the linear trend of DFA plot starts
to bend at a certain point close to the oscillation period
of 100 samples/cycle. This point is called as the crossover
point (Hu et al., 2001). The importance of crossover is
that the x-coordinate of this point dominates the linear fit
and as a result, the Hurst exponent estimation. Let’s see
the sensitivity of the segment size on the Hurst exponent
by decreasing Spax to 160, a value close to the oscillation
period of the signal. The estimated Hurst exponent for
this DFA (Fig. 2) becomes 1.482. If this signal was a
control signal and analyzed with the method proposed by
Srinivasan et al. (2012) and also described in Section 2.1,
CPI would be calculated as 0.472 for Spax = 2000, and
0.018 for Spax = 160, even though the signal is identical
after 160 samples.
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Function of the Industrial Flow Controller
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Fig. 4. DFA Plot for Industrial Flow Controller,
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It is also worth to display the crossover phenomena in
an industrial controller. Here, we use a dataset of a
flow controller having 1440 sample points from a Neste
refinery. The controller is known to be suffering from the
aggressive tuning of its master controller. Fig. 3 shows
the process value (FC.PV), set-point (FC.SP) and its
autocorrelation function (ACF) to better illustrate its
oscillation profile. ZC' stands for zero-crossing point, which
will be discussed later in Section 2.4. The conventional
MVC based CPI estimation presented by Desborough and
Harris (1992) yields 0.26 for this particular controller,
a poor performing controller as expected. On the other
hand, DFA based CPI presented by Srinivasan et al.
(2012) yields 0.96, an excellent performing controller.
When the DFA plot given in Fig. 4 is analyzed, it is seen
that due to the oscillating behaviour of the signal, the
crossover phenomena takes place and affects the slope of
the linear fit, and eventually DFA based CPI estimation.
In many industrial applications, CPI is the first and most
fundamental indicator of control performance. Therefore,
the use of DFA based CPI without any optimal selection
of segment length can be misleading in case of oscillating
control loops.

2.4 Characterization of Oscillation for Optimal Segment
Size Selection

In control loops, oscillations are mainly due to inappro-
priate controller tuning, control valve stiction, external
disturbances and process interactions (Jelali, 2013). There-
fore, it is clear that they have negative effect on control
performance as partly seen in Section 2.3. There are several
methods available in literature to detect the oscillations in
control loops. Excellent reviews of the available oscillation
detection methods have been presented by Ordys et al.
(2006); Jelali (2013). Moreover, a successful implemen-
tation of some of the oscillation detection methods to a
refinery unit has been presented by Yagei (2016); Kugoglu
and Yagcr (2017). The advantages and disadvantages of
using different methods are beyond the scope of this paper.
However, for the particular purpose of selecting the opti-
mal segment length for DFA, an auto-correlation function
(ACF) based method presented by Thornhill et al. (2003)
is one of the most robust techniques proposed. The idea
in this method is to check if the ACF of control error
signal is regular. This is done by first identifying the zero-
crossing points of the ACF, and then checking if they are
regularly distributed statistically. The half period between
each zero-crossing is denoted T'p,, and the average period
T, is estimated as

9 N—-1
T, =—— T 4
P N_lnz::l DPn, ()

where N stands for number of zero-crossings. The standard
deviation of the average period is calculated according

oT, = 2 x Ointervals- (5)
Finally, the regularity of ACF is tested using
T,
R=_—2_ 6
3 X or, ’ ( )

where R stands for the regularity of ACF and values
greater than 1 statistically indicate a strong oscillation
with a mean period of T,. Here, we use this technique
to identify the mean oscillation period of the signal under
interest. As described earlier in Section 2.3, the oscillation
period of the signal is very close to the crossover point.
Therefore, the minimum segment size can be selected
accordingly to incorporate the oscillating dynamics into
DFA plot.

3. PROPOSED APPLICATION AND RESULTS
3.1 Modified DFA Based Performance Assessment

We propose to insert one additional step in the very
beginning of the DFA steps given in Section 2.1 as step
zero, where the mean oscillation period (7)) and the
regularity of ACF (R) are calculated first with the method
presented by Thornhill et al. (2003), also explained in
Section 2.4. Then, the minimum segment size (Spin) can
be selected such that

[T, x11, if R>0.5,
Simin = {10, else. (™)
The reasoning of the parameters in Eq. 7 are as follows: (1)

It is a known fact that the intermittent and/or multiple
period of oscillations destroy the ACF pattern. In such
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Table 1. Metrics for Flow Controller

CPI Hurst CPI Swmin | 7 R
(MVC) | Exp. (o) | (DFA) | Smax P
Original
Approach 0.26 0-55 0.95 1 10-360 | g5 | 557
Modified 0.09 0.18 | 75-360
Approach
a=0.091
DFA Based CPI = 0.182 ° F(n) DFA
22
3 &MN
5 W8 A
Y 4 ,;' S
2 '...
19 ° -
Poo °
18 o
100 150 200 250 300 350

n

Fig. 5. Modified DFA Plot for Industrial Flow Controller,
Smirn Smax = 757 360

cases, the ACF looks regular by visual inspection, however
R might be less than the original proposed limit of 1. To
account for this fact, R is lowered to 0.5. In other words,
weaker or multiple period oscillations are also taken into
account in 7T}, calculation. (2) During tests, it has been
observed that the crossover point is slightly ahead of the
identified mean oscillation period 7T},. The use of exact T},
leaded DFA to include the RMS values before the crossover
point. Since, in many cases, the slope of the DFA plot
before the crossover point tends to be greater than zero,
it eventually affects the overall Hurst exponent estimation
and gives misleading results.

Below shows the summary of our approach:

(0) Smin selection: Calculate ACF of the control error
signal and apply Eq. 4, 5 and 6 described in Section
2.4. Choose Sy using Eq. 7 desribed in Section 3.1.
(1-7) DFA: Apply regular DFA steps 1-7 described in
Section 2.1 with S, obtained in step zero and
Smax = N/4, where N is the number of samples.
(8) DFA based CPI: Apply Eq. 3 described in Section
2.2.

3.2 Results of the Application to Industrial Process Data

The suggested procedure has been successfully applied
and tested on several different controllers in the same
plant. To be consistent with the earlier examples, only the
results of the already mentioned flow controller is given.
As Fig. 5 shows, the linear fit of DFA plot leads reasonable
CPI estimation, since the crossover point is out of the
segment size range. In addition, the comparison between
the original approach vs. the modified approach are given
in Table 1. With our modified approach, DFA based CPI
gives more consistent results with MVC based CPI.

As the crossover point behaves like a breaking or bending
point of linear trend of DFA plot, it is also possible to

o =0.545 ® F(n) DFA w==w== DFA Piecewise Fit

w

N

3

break point = 67.5

|
|
| l
9 f | |
= Z: I ‘9‘ I line segment 2 I
S s | & | ,=0.094 |
Lo I g"" < 2 |
3 | ‘Q.‘ | |
| % | |
gV | |
L":. line segment 1 | |
o
LAl @,=1.446 o I
89 2 3 4 5 6 789 2 3 4

-
o

100
n

Fig. 6. Piecewise DFA Plot for Industrial Flow Controller

utilize piecewise linear fitting to DFA as shown in Fig.
6 for the same industrial control loop. Defining two line
segments for DFA plot, piecewise linear fitting identifies
the break point as 67.5, which is very close to 68.1, the
mean period T}, calculated by ACF regularity method. In
addition, with piecewise linear fitting, the Hurst exponent
calculated by the proposed method (for line segment 2)
ag = 0.094 =~ 0.091, which is calculated by the additional
oscillation detection step. As a future work, the crossover
phenomena of DFA can be used as an oscillation detection
and characterization technique.

4. CONCLUSIONS

Industries have vast amount of control loops which require
automated methods to analyze the control loops. This
brings the need of robust and easy to apply control perfor-
mance assessment methods. DFA based CPI estimation is
one of the most promising methods. In contrast to MVC
based CPI estimation, DFA based CPI estimation does not
require the process delay. However, the segment size selec-
tion is sensitive to the datasets having oscillations, because
of the fact that oscillations in control loops lead to the
crossover effect on DFA plots. This results in misleading
CPI estimations if DFA is used. In this study, we propose
an additional step to DFA steps. This additional step
utilizes a robust oscillation detection method and automa-
tizes the segment length selection of DFA algorithm. With
our modified approach, it is possible to fully automatize
the CPI estimation without any concerns of reliability
and robustness. In our study, simulated signal and also
real process data collected from a refinery unit are used
to show the effectiveness of the modified approach. The
results show the increased robustness of modified approach
in control performance assessment.
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