O
OPEN ACCESS

Abo Akademi

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

A software quality course: the breadth approach
Petre, Luigia

Published in:
Quality of Information and Communications Technology

DOI:
10.1007/978-3-030-85347-1_38

Published: 01/01/2021

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:

Petre, L. (2021). A software quality course: the breadth approach. In A. C. R. Paiva, A. R. Cavalli, P. Ventura
Martins, & R. Pérez-Castillo (Eds.), Quality of Information and Communications Technology (pp. 536-552).
(Communications in Computer and Information Science; Vol. 1439). Springer. https://doi.org/10.1007/978-3-030-
85347-1_38

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of AAU: 19. Mar. 2025

https://doi.org/10.1007/978-3-030-85347-1_38
https://research.abo.fi/en/publications/ecbad2dd-5bf3-42cf-b489-cf1fa6c56db0
https://doi.org/10.1007/978-3-030-85347-1_38
https://doi.org/10.1007/978-3-030-85347-1_38

A Software Quality Course:
the Breadth Approach

Luigia Petrel [0000—0002—0648—3301]

Abo Akademi University, 1petre@abo.fi

Abstract. We present a Software Quality course taught in a MSc pro-
gram in Computer Science and Engineering. The course takes an overview
(‘breadth’) approach, reviewing the most important topics that con-
tribute to the quality of software. The course has been taught tradi-
tionally as well as online; we discuss the advantages and disadvantages
of both styles and point out what should be kept from the online expe-
rience. We also discuss the students’ evaluation and feedback.

Keywords: Software Quality - Requirements - Formal Methods - Soft-
ware Architectures - Software Metrics - Online teaching - Learning jour-
nals - Polls.

1 Introduction

The hiring policies in software industry differ substantially from other domains.
A person who has not graduated the heavy medical education programs will
never be hired as a doctor in a respectable hospital, nor would anyone hire
lawyers who have not passed their bar exam. A software company does not
follow the same protocol. The candidates to hire are certainly scrutinised by
their prospective future companies, maybe subjected to coding interviews and /or
other methods, but a diploma is not necessarily a requirement [8] for working
as a software engineer. Persons deemed intelligent and malleable enough can be
hired by a company, who then trains them in developing specific skills in demand.
This practice has an immediate consequence: many students drop from their
university programs once they find suitable employment, with their education
only partially completed. Given the ubiquity of software in our society, this
situation is rather alarming: are these software engineers able to ensure the
quality of the software running our lives?

Even more worrisome, the existing university curricula do not offer much in
terms of software quality education. While students are offered a rather wide
selection of programming languages and paradigms to choose from, the quality
of their code is not much emphasised. Some curricula can have courses on al-
gorithmic complexity, requirements, or software architecture, but they are not
as common as the programming courses. Formal methods courses are often left
out completely, as are the software metrics courses. In this context, even the
students who do graduate their respective programs, are not well prepared to
analyse how ‘good’ certain software is or how to build software of good quality.

2 L. Petre

In this paper we present a course entitled ‘Software Quality’, taught in a
MSc program in Computer Science and Engineering. After taking this course,
the students should be able to:

— Identify and experiment with four pillars of quality software: requirements, anal-
ysis (formal methods), software architecture, and software metrics

— Devise a requirements document

— Perform basic software analysis with formal methods

— Distinguish several software architectures with their advantages and disad-
vantages for quality

— Recognize and evaluate different software metrics

— Enumerate and apply different quality management techniques

While this is surely not the first time a course on Software Quality was
taught, the novelty of our approach consists in recognising the complex nature of
software quality and, hence, investigating a wide array of topics that contribute
to it. For instance, formal methods are not typically considered an essential
topic for software quality, unless formal methods researchers are involved. Still,
formal methods are the only way to capture software ‘blueprints’ and to provide
qualitative assessment of various software properties. It is also important to
recognise that formal methods do not (cannot) tell the whole story of software
quality, one reason being scalability.

We argue that, for students completing their software engineering education,
a course like this one is beneficial, as it offers the big picture of what good soft-
ware is about. Depending on the topic they will specialise and be employed in,
they can later focus on certain aspects, be that requirements, formal analysis,
software architecture and/or software metrics. Moreover, for students not com-
pleting their software engineering degrees, working with a skilled software quality
manager may be instrumental. These no-degree employees are the stereotypical
intelligent programmers, more than able to assimilate and eventually master
needed topics. Knowledgeable software quality managers can pinpoint exactly
the techniques needed in their particular jobs, be that requirements elicitation,
feature verification, unit testing, documentation readability, etc.

In addition to the content, we also explain the teaching methods we used in
the course. They essentially boil down to the Roman ‘repetitio mater studiorum’
proverb, meaning that repetition is the mother of learning. We use various tech-
niques for this, such as weekly learning journals and regular polls and quizzes
to enforce repetition. The feedback from students has been positive; apparently
they are engaged by these methods rather that overwhelmed.

The online teaching aspect is also discussed. We compare the results of teach-
ing this course traditionally vs online and point out what we believe should be
kept from the online experience.

We proceed as follows. In Section 2, we present the main tenets of the course
and we overview its structure. Section 3 reviews the teaching of the four pil-
lars: requirements, formal methods, software architectures and software metrics,
respectively. Section 4 explains the quality management topic. In Section 5 we
explore the evaluation of students throughout the course and in Section 6 their
feedback. Conclusions are presented in Section 7.

A Software Quality Course: the Breadth Approach 3

2 Basic concepts and the particulars of the course

As with many concepts related to software, terminology can be vague and mean
many things. The notion of Software Quality is no exception. Expectations of a
‘good’ software may include code ‘cleverly’ built - whatever that might mean,
fast software, or a good user interface, to name a few. This is the starting point
for the course, exploring the terms of software, quality, and software quality for
a whole 1.5-hour lecture.

Software We begin with the idea that software is eating the world [2]. Soft-
ware is a wonderful human development, which has increased our quality of life
tremendously. It has revolutionised entire industries, with businesses replaced
almost completely by software, such as in music and photography, to businesses
where their products’ value comes increasingly more from software, such as in
the car manufacturing. It has created an immense work space and continues to
be employed in aiding or solving a huge array of problems, leading to its in-
creased complexity: it is harder to pinpoint exactly all it does. This leads to the
concept of software crisis, where methods for developing small software systems
kept being applied for their large counterparts, leading to famous software fail-
ures. For avoiding the latter, we need to better understand the definition and
nature of software, which we do by investigating a classical reference [5].

Quality To grasp what is meant by quality, in general, we delve into a bit of
history, recognising notable personalities with an influence on quality, such as
Frederick Winslow Taylor (1910s), Henry Ford (1863-1947), Walter Shewhart
(1920s), and W. Edwards Deming (1950s). Often, we only present the technical
aspect of our topics (to save time), but explanations about the people who led to
particular developments (and why) are motivating the students. We distinguish
between quality assurance and quality control, explaining that quality assurance
allows a shift to the ‘left’: we take care of this earlier in the product lifecycle.

Software Quality With an adequate understanding of the concepts of software
and quality, we move on to explore what is usually understood by the concept
of software quality. Based on a classical source [5], we first underline the four
main software characteristics contributing to the challenge of ensuring its qual-
ity: complexity, conformity to other interfaces, changeability, and invisibility.
We then emphasize four partial solutions to software quality, namely the ‘buy
vs build’ solution, the refinement of requirements and rapid prototyping, the
incremental development, and the contribution of great designers. We analyse
these in some detail and emphasize how they keep being valid more than three
decades after they were suggested.

We then move on to more concrete terms and topics we will explore in some
detail during the course. We first distinguish between functional (what the sys-
tem should do) and structural quality (how the system should do it). The con-
cepts of fault, error and failure are also defined and placed in the context of
quality assurance vs control. We point to some bodies whose mission is, in a
form or another, software quality and explain their main role in quality manage-
ment, hence their treatment in that module of the course. We end this part by

4 L. Petre

explaining the four pillars of the course, namely Requirements Engineering, For-
mal Methods, Software Architectures, and Software Metrics. We also show how
they correspond to the classical principles proposed by Turing award recipient
Fred Brooks [5].

It always seems to be a surprise to the students to learn that a software
of good quality is the one implementing its requirements (functional and struc-
tural), nothing more and nothing less.

2.1 Structure and Teaching Methods

This course has been taught several times, always in an 8-week period, both typ-
ically, in a classroom, as well as online. The components of the course are: (1)
Lectures (with polls), (2) Learning Journals (mandatory), (3) Quizzes, (4) Dis-
cussion Seminars, and (5) Exam (mandatory). The components are distributed
as follows during the 8 weeks:

— Lect. 1 (week 1) — The concepts of software, quality, and software quality
— Lect. 2 (week 1) — Requirements - types and elicitation

— Lect. 3 (week 2) — Requirements - specification, validation, evolution
— Discussion seminar 1 (week 2) — we exercise requirements

— Lect. 4 (week 3) — Models and TLA+: the case of Amazon Web Services
— Lect. 5 (week 3) — The case of the French metro and modelling in Event-B

— Lect. 6 (week 4) — Program verification, the case of Dafny
— Discussion seminar 2 (week 4) — we discuss examples of specifications in TLA+, Event-B and
Dafny

— Lect. 7 (week 5) — Model checking, SAT and SMT solvers run our provers
— Lect. 8 (week 5) — Software Architecture is key

— Lect. 9 (week 6) — More software architecture fundamentals for quality and how could mea-
surement and metrics for software help us

— Discussion seminar 3 (week 6) — we discuss logical properties, we ponder about some architec-
ture questions and reflect on testing, bugs and correctness

— Lect. 10 (week 7) — Software metrics for internal product attributes (mostly size)
— Lect. 11 (week 7) — Software metrics for internal and external product attributes (structure,
usability, maintainability, security)

— Lect. 12 (week 8) — Quality Management - planning, standards, ISO 9001, reviews and inspec-
tions

— Invited lecture (week 8) — Quality in Space Software

The optional components of the course are the lectures, the quizzes, and
the discussion seminars. There are typically 12 regular lectures and one invited
lecture at the end of the course, to exemplify how software quality is ensured
in space software. There are three discussion seminars, where we typically ex-
plore the concepts of the previous lectures in more depth. During every lecture,
the teacher poses several online and anonymous polls checking whether some
explained concepts have been well understood. Each poll consists in 1-2 multi-
choice questions relating to a concept or methodology just explained by the
teacher. After the students reply online (they are given a minute usually), the
teacher displays the proportion of answers on each option and discusses what is

A Software Quality Course: the Breadth Approach 5

the correct answer. Since not all the students can (nor have they to) participate
in the lectures, these polls are then posted as quizzes to be - optionally - taken
at any time during the course. Each taken quiz is worth max one point (out of
100 for maximum grade of the course).

The only mandatory components of the course are the learning journals and
the exam. Every week, the student has to fill in a learning journal entry, of half
a page to one page (or longer if desired). In each entry, they should explain what
are the main concepts they learned during that week, give some definitions and
examples, and discuss the topics in any way they see fit. They are encouraged
to also ask questions, to point out what topics were new to them or were seen
before, as well as what they enjoyed and what they did not. The teacher then
reads each entry and replies to questions, comments on the entry and awards
maximum 2.5 points per lecture. In a week with two lectures, this means the
learning journal can earn maximum 5 points, and in a week with one lecture and
one discussion seminar - maximum 2.5 points. Hence, the learning journals can
bring up to 30% of the grade. The remaining 70% is to be obtained from the
exam, which reviews the concepts learned during the course.

As seen, the maximum grade can be obtained only from the mandatory
components (learning journals and exam), but additional points can be obtained
from quizzes (max 12 points in total).

3 Content of the course

The four main pillars of the software quality that we explore in the course are
requirements, formal methods, software architecture, and software metrics. In
the following we shortly overview our approach in teaching them.

3.1 Requirements
Getting the requirements wrong, even partially, is the single most devastating
reason for software problems, be them only faults or errors, or full blown failures.
Although many universities (including ours) have at least one course dedi-
cated to (functional) requirements, we dedicate two lectures to requirements in
this course and emphasize their role in software quality. There were some stu-
dents (up to 10%) who remarked that they knew all about this topic, but the
vast majority appreciated the overview, especially in light of the ‘surprising’ def-
inition of software quality - implementation of requirements. Below we discuss
the topics we cover with respect to requirements.

Requirements definition and types Given the vast diversity of software,
understanding what a requirement is, who formulates it and how is of high
relevance. There are several ways of classifying requirements, the most impor-
tant of which are descriptive vs prescriptive, user vs system, and functional
vs non-functional. We discuss these in some details, with the help of exam-
ples. Understanding the levels of abstraction implicit to classes of stakeholders,
the immutability of some requirements, or the necessary measurability of non-
functional requirements are topics that contribute to the quality of software we
develop.

6 L. Petre

Requirements Engineering Getting the requirements into a requirements
document is referred to as requirement engineering. This is an iterative process,
well described in standard software engineering books [12]. We investigate the
following topics:

— Requirements Elicitation We start with the extreme approaches of business
geniuses such as Steve Jobs’ opinion that customers do not know what they want
or Henry Ford’s observation that, if queried, customers would have desired faster
horses (not cars). Obtaining the requirements from customers is a complex pro-
cess, involving often contradictory, incomplete or changing requirements. Several
methods of elicitation are analysed, such as interviews, ethnography and stories.

— Requirements Specification There are several alternatives to formulating re-
quirements, in natural language, in some structured or tabular forms, or as use
cases. We review all these with examples, and then ponder on the sections of the
requirements document and its users.

— Requirements Feasibility and Validation Not all systems can or should be
built; in feasibility studies we focus on asking the right questions to determine if it
is worth to develop a software. Once we determine it is, validating the requirements
with the stakeholders is very useful.

— Requirements Change Software is infinitely malleable, as debated in the initial
lecture, hence changing it and its requirements is to be accounted for. Traceability
is one essential aspect that, if not handled properly, can threaten software quality.
For that, we explore traceability methods especially.

3.2 Formal Methods

A formal method allows to analyse a model of the software or even the software
itself, to verify it respects certain properties.

Why Formal Methods Formal Methods are not a mainstream teaching sub-
ject in today’s universities. Their promoters are the researchers and, more re-
cently, some industrial giants: Amazon [6, 9], Facebook [10], and Google [11].

Software is embedded almost in all aspects of the society, so it is necessary
to be able to guarantee what it does before deploying it. This is particularly
essential in critical software, such as air transportation, army, nuclear plants,
medicine, etc. Mass software construction does not rely on formal methods, but
on simulation and testing. While these techniques have their uses, we argue for
them being insufficient: clear analysis of models is needed, and we discuss models
to understand their role in formal methods.

‘When Formal Methods The software lifecyle with respect to quality is four-
stepped: (1) we collect the relevant (user and system, functional and non-functional)
requirements, (2) we draw the software architecture of the system, (3) we apply
formal methods to the modules identified via software architecture, and (4) we
evaluate our results with software metrics. The effective implementation of the
software takes place during steps (2)-(3).

A Software Quality Course: the Breadth Approach 7

In this course we treat formal methods before software architectures, because
they address the analysis of functional requirements; software architecture deals
with analysing the non-functional requirements. In addition, formal methods
require a special mindset that is likelier to be present in the first half of the
course.

Three Formal Methods We assume we have a correct set of requirements:
how do we transform them into software and how do we guarantee that all
the requirements and nothing more is implemented? We explore this with three
formal methods: TLA+, Event-B, and Dafny.

— TLA+ TLA+ is reviewed with two case studies: its adoption at Amazon [9] and by following
its inventor, Turing award laureate Leslie Lamport, teaching the modeling and verification of a
famous logical problem: the water jug riddle. This was part of the quest in the Bruce Willis and
Samuel Jackson movie Die Hard 3. At some point, the heroes need precisely 4 gallons of water
and they have two jugs, a 3-gallon one and a 5-gallon one, that they can fill with water from
a tap. Model checking is employed to verify properties, i.e., all states of the modeled system
are explored for these properties. In particular, model checking is used to verify that there is
no possible sequence of actions that can end up with the bigger jug having exactly 4 gallons
of water; the TLA+ model checker returns a counterexample, meaning it found a particular
sequence of actions that achieves that.

— Event-B Event-B is motivated by its active use at Siemens, to develop the software on driverless
trains [4]. Event-B comes with a tool for proving: we first write the model and the tool verifies
its correct syntax; nothing out of ordinary so far. But then, we also formulate properties that
we would like our model (the future software) to respect: the tool verifies if these properties
hold for the model. Moreover, we can start from a simple model capturing just the essence of
the software, and then add details. The tool keeps checking if the more complex version still
respects the properties and if it is indeed a correct development of the simpler model. This
development strategy is called refinement.

— Dafny Dafny is two languages into one: an imperative language, with an executable core and a
functional, specification language for annotations. Annotations describe what a program should
do, and Dafny generates proofs that the annotations match the code; if it cannot, then it asks for
proof hints, which might be given or might suggest a problem t0 resolve. Amazon Web Services
(AWS) use Dafny and other formal tools [6] and claim that this is one of the main reasons why
people move to AWS: they want formal guarantees that their data is stored correctly.

How Formal Methods prove An extra lecture delving into the proving tech-
niques in formal methods is necessary at this point. We investigate mainly model
checking and satisfiability (SAT and SMT) checkers. With this, the students are
shown the breadth of the topic of formal methods as well as the richness of its
aspects. It equips the students with knowledge that - given the scarcity of higher
education in this field - can offer them a big advantage compared to their peers.
The relatively brief excursion into formal methods (4 lectures) is not exhaustive
by far, but with it, the students know the main coordinates as well as where to
look for more.

3.3 Software Architectures

We now address non-functional requirements, after the treatment of functional-
ity with formal methods. Non-functional requirements are a direct consequence
of the unavoidable complexity of software, hence the overall structure of the
software system becomes relevant. In software architecture, we refer to non-
functional requirements as software qualities and to design decisions for achiev-
ing them as tactics.

8

L. Petre

Software Qualities We focus on availability, modifiability, performance and security. Avail-
ability is concerned with failures, modifiability with changes, performance with timing, while
security combines availability (providing services to legitimate users) with resisting unautho-
rised users.

Tactics For each quality, there are tactics that favour it and tactics that do not. This is one
of the cornerstones of understanding software architecture: there are many ways to implement
a certain functionality, some better for certain goals. It is impossible to satisfy all possible
qualities, hence defining the most important ones for a system allows a trade-off with the
various stakeholders [3].

Architectural styles A collection of tactics forms a particular software architecture. People
have devised generic styles that promote or inhibit certain software qualities. We analyse several
styles and focus on cloud architectures, since the concepts are familiar to students; they have
an easier time to depict the main architectural issues of interest and then to generalise them to
other styles [12].

Views and Documentation Another aspect of complexity inherent to software is that we can
decompose a system based on various criteria: functionality, concurrency, physical allocation,
etc. These are structures of a system that can be viewed in different ways, for instance in certain
templates or diagrams. This is important for building the system, but also for documenting it.

3.4 Software Metrics

In this module we describe how we can measure the quality of software [7].

— Software measurement We start by clarifying what we want to measure, for instance the like-

lihood of product failure or delay, of losing key personnel, of bankruptcy, etc. In general, the
ideal is of getting a ‘big picture’ indicator of software ‘goodness’ during development or mainte-
nance. We clarify that there are several entities we can measure, such as products, processes, or
resources, and for each we can have several attributes we are interested in, both internal (say,
size for code) or external (say, reliability for code). The problem in software measurement is
that we want to control external attributes such as reliability of code (a product), productivity
for personnel (a resource), or cost-effectiveness for design (a process). However, we can only
measure internal attributes, for instance code, team or design size.

Software size Size is an interesting internal attribute that is used widely to predict many other
measures. We learn to express size in the number of lines of code, differentiating between more
and less important lines; Halstead’s length, vocabulary and volume; the number of function
points. We learn to use size to normalize measures of other attributes, quantify the amount of
reuse, and measure attributes related to software testing.

Software structure Software structure manifests as structure of data (trail of data items as
created or handled by the program) and structure of control (sequence in which instructions
are executed in a program). This can indicate issues impossible to see with the number of lines
of code, for instance, the iterative and looping nature of the program. Since there is a link
between structure and quality of software, we investigate structure in some detail. Structure
is usually detected by studying flowgraphs, so we quickly review them. We discuss structured
programming, prime decomposition, cyclomatic complexity, and as an example, their applica-
bility in testing. Flowgraphs illustrate the inner structure of software modules, but there are
also attributes for measuring the overall structure of a software system and its inter-module
relations. We study here modularity, morphology, tree impurity and internal reuse.

External attributes We are interested in measuring the quality of software code, especially
its external attributes that depend on users. What we can measure, however, are the internal
attributes, that can well be predictors of external attributes and that are available for measure-
ment early in the software lifecycle. In contrast, the external attributes depend on the user’s
interaction with the (ready) system, so much later in the software lifecycle. We discuss in some
detail the measuring of defects, usability, maintainability and security.

4 Quality Management

Should software quality be the job of the software engineers, should some admin-
istrators take care of it, or both? We argue for the last option and explain what
it means to have both a software engineering and a software quality team [12].

A Software Quality Course: the Breadth Approach 9

Quality processes and culture While small and large software projects have
different quality assurance processes, we can apply a quality process to any soft-
ware project. A specific quality management team (different from the software
engineering team) needs to ensure the realisation of such a process. The expec-
tation is that a ‘good’ process will lead to a ‘good’ software. The quality and
the project managers can agree on a particular quality assurance process, with a
certain number of milestones. The process can follow standards for quality that
are specific to the organisation and/or to the specific product being developed.
The quality manager should report to higher management, while the project
manager should have the freedom to ratify what quality procedures are relevant
to the current project.

Standards Software standards are important for several reasons. They can be
a reservoir of best practices, used to avoid past mistakes; they can clarify the
organisation’s view on quality or even the user expectations; they can provide
for smooth adaptation and/or continuity for new employees, who understand
the organisation through the prism of its standards. The quality and project
managers can define both process and product standards. Both types should
avoid being over-prescriptive and requiring excessive clerical work. A method of
convincing software engineers on the worth of following standards is to include
them in the process of devising them. There are numerous international and
national standards as well, and certain companies require to work only with other
companies who have followed particular software standards (e.g., ISO 9001).
However, such standards typically confirm the presence of a particular process
that has been followed in creating certain products; the quality of said products
is a totally different issue.

Reviews and Inspections The most typical type of quality ‘assurance’ in
companies is that of organising reviews and inspections. The reviews can ‘sign
off’ a certain product, to move into the next phase and should be organised
with several participants well in advance. Program inspections can be simpler,
such as peer reviews where the most common mistakes are checked, e.g., ‘have
all variables been initialised?’ or ‘is each loop certain to terminate?’ or ‘has
space been allocated correctly?’, etc. The existence of a quality culture in the
organisation is of utmost interest here, since blame pointing is really unhelpful
and can lead to people hiding and refusing to share their code.

5 Course Evaluation

As can be seen from the described course content, the topics are modular and we
delve into each of them only to some level of detail. Ideally, a university should
have more courses to offer on each of the topics (requirements, formal methods,
software architectures, software metrics, and quality management). In a software
quality course we can only have an overview (breadth-approach) of these topics
and study how they contribute to improving the software products.

This breadth-approach required a certain approach to teaching, based on
repetition, to better cement the certainly new concepts. First off, the lectures

10 L. Petre

were made as interesting as possible, with each slide well-thought of in terms
of content and pictures. Some examples of slides are shown in Fig. 1. Then, to
interrupt the monotony of the teacher talking, we introduced several polls per
lecture. These polls are very easy to implement in Zoom, for instance, but can be
certainly kept when returning to traditional teaching. One thing we can safely
assume about our students is that they all have a mobile device with them, and
so they can type some tiny-url addresses that can take them to the anonymous
polls. DirectPoll [1] is one such resource. The results of their voting can be
then shown on the big screen. This feature is entertaining both for teachers and
students, makes the students more willing to focus on what is taught, knowing
there will be a check-up very soon, and contributes to the repetition of concepts,
as argued in Section 1. It is also very friendly: it is anonymous, the teacher
explains the correct choice immediately after, and can also discuss the probable
reasons some other options were chosen as well as why they were not correct.
If some students really do not have a mobile device with them, then the polls
are available as quizzes during the whole duration of the course; this also helps
people who do not take part in the lectures. An example of a poll is shown in
Fig. 2 and its quiz counterpart in Fig. 3.

Software characteristics

© invisible”

Why Software Architecture (SA)?

* Addresses complexity

~ Somany possible states! Cannot abstract them away, they are fundamental
* Non-linear increase with size

« Arbitrary complexity, man-made
* Need to address the overall system structure

* Limited opportunities to detect defects ("bugs")

« Often new demanding functionality has to be implemented
* Often software has to implement extraordinarily high complexity
B faster in size and complexity than methods

to handle complexity are invented" ®=

Comparison of paradigms What do we measure?

« First worry of any measure

* Without formal method: * With formal method: : P
R iy R — What are the entity and its attribute to measure? -

- Engineers design the “happy case” ~ Formal spec focuses on “What needs
+ Processing path on which no errors right?” * Software entities ®
oceur + The correctness properties - - Software-related activities [] o
+ Most common case + Abstract version of design + Have a time scale
« significant challenges + Apply model checker to find bug « Have and resources i &® S []

~ After "happy case", engineers think about ~ Inall possible cases
“What could go wrong?”
+ Prioritised cases

- - Artifacts, deliverables, or documents that result from a process
activity
— Resources -> Entities required by a process activity

Fig. 1. Some Software Quality slides

The second way of implementing repetition to favour learning is by using
weekly learning journals. They are rather modern and many courses implement
them; the difference from the approaches in many other courses is that, in the
presented course, the teacher really reads all entries and provides feedback, even
if short. While a student listens to a lecture, certain questions and comments
arise, but they are maybe unexpressed due to a variety of reasons (shyness, not

A Software Quality Course: the Breadth Approach 11

Poll 5:Why FM@Amazon 1 question Yes
1. Why did Amazon AWS people started to look for formal methods? (Multiple Choice)

Answer 1: Because Microsoft, Facebook and Google already used them, and they did
not want to be left behind.

Answer 2: Because of the complexity of their algorithms and code
Answer 3: Because of subtle bugs in designs

Answer 4: Because they wanted to replace the standard verification techniques in
industry (design reviews, code reviews, stress testing, fault injection, etc) with formal
methods.

Answer 5: Because they are in a critical business domain.

Fig. 2. A poll

Why did Amazon AWS people started to look for formal methods?

a. Because they wanted to replace the standard verification techniques in industry (design reviews, code reviews, stress
testing, fault injection, etc) with formal methods.

b. Because they are in a critical business domain.
c. Because Microsoft, Facebook and Google already used them, and they did not want to be left behind.
d. Because of the complexity of their algorithms and code

e. Because of subtle bugs in designs

Fig. 3. A quiz question

wanting to interrupt the teacher, what will other people think if T ask this, etc).
The learning journals are the place to ask everything; they offer regular slices
of personalised teaching, each learning journal entry being a private discussion
between the teacher and the student. It is in fact very enriching for both par-
ties. Comments like ‘more polls’; ‘less slides’, ‘go slower’, ‘can we study cloud
architectures too?’ are only some examples of feedback to the teaching style.
The most interesting and thought provoking questions and comments are those
related to content, because the students understand the material in their own
unique way, influenced also by their background and sometimes work experience.
An example of a learning journal entry is shown in Fig. 4.

The third way of implementing repetition is by introducing three discussion
seminars, paced throughout the course, one after three lectures. There we discuss
ideally all that students would like to delve deeper into. In practice, students are
again shy and expect the teacher to come up with topics of discussion. We set up
little problems and exercises (sometimes posed a few days before the seminar)
to sparkle up the discussion. This works better in the traditional setting than
online, but overall, people like to be poked and prodded a little and asked to
explain their opinion.

All in all, these three methods (polls, learning journals and discussion semi-
nars) contribute to exercise all the topics we discuss about in the lectures. They
reinforce the concepts, clarify them, and keep the students engaged and inter-
ested. The most rewarding aspect is that the students appreciate the effort (for

12 L. Petre

try 2 of the Learning Journal here &
Due date: 13 September 2020, 11:59 PM
Q8 G |0 B8 ¥ &

depend on each other or have relation between each other. It is therefore also good to always give
each requirement its own ID to be able to refer to it easily later. This avoids redundancy.

In order to verify that the system will work as intended, we can use formal methods. Formal
methods are ways to mathematically model a system to analyse its functionality. There are well
defined methods already out there such as UML (Unified Modelling Language) which are known by
many and should not be ambiguous to anyone.

By identifying errors already at the verification stage before we have written a single line of code, we
can money and man hours which it could cost to fix those errors if they were found later.

There are many good tools available to verify these system models which are built using formal
methods. These tools make the whole process even easier for us.

Classification of what was new

In this lecture we again covered mostly things | had already heard in the requirements engineering
course, but as | mentioned last time, | had forgotten so much that | did not feel it was unnecessary to
participate in the lecture. | am still not sure whether it is good that | believe | remember certain
things from that course or not. | say this because at times | feel like | easily get confused with what |
believe is correct and what I think | remember from years ago. Hopefully these things should go hand
in hand, but as that course was mainly focused on requirements, it was probably more in depth and
not as “high level” as in this course (in terms of covering requirements).

Formal methods we have also quickly covered in some courses (the use of UML), but 1 am excited to
learn more about them next week as that is probably the topic | am the most unsure about at this
moment and time.

@ N\ O O #¢ 6

L

X

N Change user v

420f45 7
3.00

rrent grade in gradebook

0

Feedback comments X

Paragraph
4 EES = A
Fontfamly ~ 3(12p) v 1] HQE
Great entry Matheos! It is not at all a problem that your entry is lot
suggested length; the main point is to cover all concepts from the
o very, very well. | am very glad that the quizzes were better st
is beneficial both to you and to me, helping to make the course ex

Regarding UML - hmmm. It is not a formal method! It is just a colle
diagrams with associated text descriptions, but no precise seman
verification other than informal. It is the industrial standard and ve
many researchers tried to associate to various diagrams (for insta
precise meaning. It remains of course very useful, because this is
comfortable with, but needs to be supplemented with more preci¢

Path: p » span

Questions and feedback

Fig. 4. A learning journal entry

instance to read and reply to the learning journals questions) and so it all seems
like a good idea worth continuing with.

6

Students’ feedback

In our university, the students’ feedback is not mandatory nor recompensed,
hence we have rather low rates of participation, about 30%. With this is mind,

we
1
2
3
4.
5.
6
7
8

9.
10.

11.

explored the following questions for student feedback:

71 believe that the content of the course was, overall, according to its learning objectives.” (4)
”The structure of the course helped me to achieve its learning objectives” (4)

”The course materials helped me achieve its learning objectives.” (3.93)

”The teacher’s pedagogical skills supported my learning.” (3.73)

71 have actively participated in the course activities.” (3.47)

71 feel that the course supported my education and/or future work.” (3.8)

71 feel that the course has worked well in digital form.” (4)

”Free comments on questions 1-7 and the course in general. What worked well and what less
well?”

”The experience of writing a learning journal helped.” (4)

”Could you please explain in a few words how was your experience of learning the whole course
online? Was it lonely? Was it better? Did you miss anything?”

”Do you feel like you understand software quality better after this course?”

For questions 1.-7. and 9., students must choose between grades 1-4, 4 rep-

resenting ‘totally of the same opinion’ and 1 meaning ‘totally of the opposite
opinion’. The scores obtained are indicated in parentheses. The comments for
question 8. are below:

1. ”Some lectures had a tad too much info, otherwise the format was good.”

2. 7 Great material and engaging polls during the lectures.”

3. ”The course was quite interesting and thanks to the teacher, she never made the course boring.”

4. 71t was a very helpful course. The only thing which was quite hard for me is size of lecture
slides, in my opinion there were too many slides.”

5. 71 feel good about the course content and the teaching method. Big thank to the lecturer!”

6. ”For a remote course all went really well in my opinion”

7. ?There’s been only one issue with the course. I think it would have been better if students

were expected to gain a certain number of points from their learning journal entries instead
of having to submit all of them. Otherwise the course was very informative and the streaming
format worked very well. I'm also glad that the teacher provided feedback to our learning
journal.”

A Software Quality Course: the Breadth Approach 13

8. ”Very thorough course. I learned several concepts during this course. I like that it is in digital
form.”

9. "The course is designed, structured and executed well.”

The answers to question 10. are below:

1. ”Was better for me as i work besides school so was nice that the lectures were recorded so I
could watch them later.”

2. "It was well planned and went smoothly for me. In fact, online course is better than the tradi-
tional one as learning at own pace and own comfort zone is easier.”

3. 7It was ok, no problems.”

4. 7”Face-to-face courses are always better in my opinion, but the teacher handled the distance
courses very well. Being able to watch again the lectures is a big plus.”

5. 7It was great, easier to focus.”

6. "I missed the face to face interaction with fellow students, but also the teacher. I can’t speak
to if the course was ”better” when it was held online this year. But I can say that the course
lectures did not suffer because of it. Maybe even better, because of the Zoom polls.”

7. ”Specifically for this software quality, it was quite good, not lonely at all. I like it.”

8. 7It worked perfectly with my situation at the moment, online studies and work are a perfect
fit, almost”

9. ”My online learning experience is good in general. Some major benefits: I can arrange my time
to watch the recorded lessons later. I can target the interesting parts of the course. I can skip
some parts that I already knew.”

10. ”For me remote learning is preferred, since I have to actively work. I could tackle immediate
work tasks when needed (once during this course) without losing time to move around the
campus.”

11. 7T actually prefer it to normal lectures, because I can always go back to recorded videos. I can
also watch materials whenever it fits my schedule. I can manage my time more efficiently and
so I learn better. Distant learning has been a bit lonely, but I think it works well with courses
that consist mostly of lectures.”

12. ”My experience of this course is very good. I was learning it in my own time and I didn’t feel
much pressure.”

13. ” It was challenging to always try to keep focused when you are at home with so many distrac-
tions.”

14. 7”1 am used to the online mode of learning now, and it was designed engagingly with the dis-

cussion seminars and quizzes.”

The replies to question 11. were different shades of ‘yes’; one answer stood
out: "Even if I have years of experience working as a programmer, the course
is still very helpful to connect and fulfil my understanding of software quality,
especially regarding the software quality practices from big companies.”

7 Conclusions

Given freedom in the job of teaching a course whose content is not totally stan-
dard, there is a big temptation to choose one’s favourite topic related to the
course name. In the present case, formal methods were briefly considered to form
the (only) body of the course, also given their relative under-representation in
Computer Science and Engineering curricula. But formal methods require a cer-
tain background and a certain openness in the local industry - not everyone lives
in Seattle to be hired by Amazon. More importantly, they do not tell the whole
story of Software Quality. Getting the requirements well is certainly the starting
point. The huge complexity of contemporary software makes formal methods
inapplicable on the whole system in all details, requiring software architecture
techniques to reach modules of functionality. Finally, we need a way to measure
what we produce; logical properties again do not tell the whole story and need
to be supplemented by measuring a variety of attributes (e.g., structure).

14 L. Petre

We taught this course in both settings - traditional and online. The tradi-
tional setting has the advantage of ‘reading’ the students much better. Compare
discussing our topics with and in front of our students and getting immediate
body language feedback on the quality of our discourses with looking at cameras
and talking in front of our laptops, with tens of black rectangles representing
the students, neither seen nor heard. The online setting has made it possible for
more students to take the course (51 compared to 19), since the barriers of being
in the classroom were eliminated. We recorded the lectures and saved the videos
in the Moodle page of the course; we (a digital assistant) even split each main
video of a lecture into several smaller videos addressing certain topics and saved
those too in the Moodle page. These are likely to remain useful regardless of the
teaching style. A hybrid style is in fact very probable, in which the traditional
teaching is resumed, but the lectures are still recorded for those who cannot
make it to class.

Finally, we found especially the learning journals and the polls to be ex-
tremely useful for learning. They seemed to also be entertaining for both teachers
and students, and so learning becomes almost a game. These ideas can certainly
be re-purposed for other courses as well, especially those courses with abstract
and harder to grasp topics.

References

1. Direct poll. https://www.directpoll.com, Last accessed April 20, 2021.

2. M. Andreessen. Why software is eating the world. Wall Street Journal, 2011. Last
accessed April 9, 2021.

3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 3rd edition, 2013.

4. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Meteor: A successful appli-
cation of b in a large project. In International Symposium on Formal Methods,
volume 1708 of Lecture Notes in Computer Science, pages 369-387. Springer, 1999.

5. F.P. Brooks. No silver bullet — essence and accident in software engineering. Com-
puter Journal, 20(4):10-19, 1987. Last accessed April 9, 2021.

6. B. Cook. Formal reasoning about the security of amazon web services. In Computer
Aided Verification, volume 10981 of Lecture Notes in Computer Science, pages 38—
47. Springer, 2018.

7. N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical Approach.
CRC Press, 3rd edition, 2015.

8. J. Milord. No degree? no problem. here are the jobs at top companies you can land
without one. LinkedInNews, April 8, 2019. Last accessed April 20, 2021.

9. C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How amazon web services uses formal methods. CACM, 58(4):66-73, 2015.

10. P. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Logic
in Computer Science, pages 13-25. ACM, 2018.

11. C. Sadowski, J. van Gogh, C. Jaspan, E. Soderberg, and C. Winter. Tricorder:
Building a program analysis ecosystem. In International Conference on Software
Engineering, pages 598-608. IEEE, 2015.

12. I. Sommerville. Software Engineering. Pearson Education, 10th edition, 2016. Last
accessed April 20, 2021.

