
 

This is an electronic reprint of the original article. This reprint may differ from the original 
in pagination and typographic detail. 

 
A Systematic Literature Review on Environment Modeling Techniques in Model-Based
Testing
Siavashi, Faezeh; Truscan, Dragos

Published: 01/01/2015

Document Version
Final published version

Link to publication

Please cite the original version:
Siavashi, F., & Truscan, D. (2015). A Systematic Literature Review on Environment Modeling Techniques in
Model-Based Testing. (TUCS Technical Report; Vol. 1129). TUCS Turku Centre for Computer Science.
https://urn.fi/URN:NBN:fi-fe202201147034

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 26. Mar. 2025

https://research.abo.fi/en/publications/15bc406e-8442-46d4-bd4d-6266c1ee0c40
https://urn.fi/URN:NBN:fi-fe202201147034


Faezeh Siavashi | Dragos Truscan

A Systematic Literature Review on
Environment Modeling Techniques in
Model-Based Testing

TUCS Technical Report
No 1129, February 2015





A Systematic Literature Review on
Environment Modeling Techniques in
Model-Based Testing

Faezeh Siavashi
Åbo Akademi University, Department of Computer Science
Joukahaisenkatu 3-5A, 20520 Turku, Finland
faezeh.siavashi@abo.fi

Dragos Truscan
Turku Centre for Computer Science
Joukahaisenkatu 3-5 A, 20520 Turku, Finland
dragos.truscan@abo.fi

TUCS Technical Report

No 1129, February 2015



Abstract

In this paper, we present a systematic literature review (SLR) on the use of envi-
ronment models in model-based testing (MBT). The objectives of this paper are to
identify what are the main characteristics of environment models, to which type
of systems and in which application domains they have been applied, as well as
what are the benefits and research challenges when using them for testing and test
generation. The SLR is performed for publications retrieved from well-known
academic publication databases in order to answer a set of research questions.
Sixty one publications have been identified and selected as primary studies on
which we performed our analysis. The results show that the environment models
are especially useful in testing systems with high complexity and nondeterminis-
tic behavior, and that they facilitate automatic test generation. However, building
environment models is not always easy due to the lack of automation and tool
support.

Keywords: environment model, software testing, model-based testing, systematic
literature review



1 Introduction

Testing is the process of executing a system with the goal of detecting possible
failures. From given specifications of a system, a set of test cases can be defined
and executed as test inputs to the system. The test outputs will be compared
with the expected outputs. The goal of testing is to obtain the confidence that
the system meets its requirements, but also that it does not preform any unwanted
behavior [80]. The testing process is an essential part of developing a system.
However, it is time consuming and costly. In order to speed up and make testing
process more efficient, different techniques and approaches have been developed.

Model-Based Testing (MBT) is a black-box testing technique that generates
tests from abstract behavioral models [79]. The models can represent either the
expected behavior of the system under test (SUT) or of its environment, or in some
cases of both. In this context the abstraction is beneficial in hiding unnecessary
details of the implementation and reduces complexity in testing. Nevertheless, it
is also essential that a test model be detailed enough in order to generate effective
test cases. Finding the right level of abstraction for the test model is one of the
challenges of MBT [80].

In recent years, the complexity of computer systems has increased signifi-
cantly and as a result testing has become more difficult. Complex systems operate
in the environments with large numbers of events and with different timings. Per-
forming a testing procedure in these systems leads to a large number of test cases
to cover all possible states of the system. Executing all possible test cases be-
comes time consuming and unfeasible. Therefore, more advance methodology
in MBT is required in order to optimize the number of test cases and reduce the
complexity of testing [44].

One technique to reduce the testing effort in MBT is to use an environment
model. Environment modeling is an activity that specifies a part of the real world,
in which the system is integrated. The process of environment modeling results
into an environment model, which captures all relevant assumptions and contains
all interactions with the SUT [54]. Environment modeling can help in dealing
with testing complex systems, since one can use environment models to generate
automatic test cases for particular behavior of the SUT. In fact, in formal veri-
fication and testing, one of the most challenging tasks is the construction of an
adequate model of the environment [25].

We searched and studied a number of papers in MBT and found that many of
them employed environment models in testing in a variety of approaches. How-
ever, we did not find any concrete study or survey which discusses about all the
approaches available for environment modeling in the context of MBT. Therefore,
we identified the need for a SLR to explain these issues.

The main objective of this SLR is to understand how an environment model
can enable MBT, to which types of systems and at which testing levels it has
been applied and what are the current problems. To our best of knowledge, this is

1



the first paper focusing on different approaches in environment modeling using a
SLR.

For this work, we have followed the guidelines of conducting a SLR as pre-
sented by Kitchenham et al. [58]. We searched the papers reporting experiences
of using environment models in their work or studying the applications and tools
which automate the environment modeling process. We extract the information as
presented by the authors of the available literature.

The remainder of this paper proceeds as follows: in Section 2, we define the
research method, provide research questions, and describe the material selection
process based on the defined selection criteria. In Section 3, we answer the re-
search questions and present the data analyses from our findings. In Section 4, we
discuss validity threats and in Section 5 we provide a discussion and conclusions.

2 Research method
Many authors proposed methods for performing SLRs [19, 26, 52, 53, 58]. In this
work, we follow the approach suggested by Kitchenham and Brereton [58], based
on following steps:

- Identify the need for a systematic literature review (discussed in Introduc-
tion)

- Define and formulate research questions (Section 2.1)

- Conduct a comprehensive search (Section 2.2)

- Quality assessment (Section 2.3)

- Classify data needed for the research questions

- Extract data from each selected paper

- Summarize the study results (Section 3)

- Interpret applicability of the results (Section 4)

- Write up the results as a report

In the introduction, we clarified the importance of providing a systematic lit-
erature review in environment modeling, which is in line with the first step. In
the following sections, we show in detail how we applied the other steps and then
report the results.

2.1 Research questions
Our SLR addresses the following research questions:

• RQ1: What are the characteristics of the environment models used for
model-based testing?

2



• RQ2: What are the advantages of using environment models in testing?

• RQ3: To which types of systems are the environment models applied?

• RQ4: At which testing levels are the environment models applied?

• RQ5: What formalism and tools have been used for testing with environ-
ment models?

• RQ6: What problems and challenges have been observed by researchers
using environment models in testing?

2.2 Search and selection process
This process includes defining search terms, selecting databases to be searched,
and defining criteria for selection. Each of them is described below.

2.2.1 Search terms

We collected a set of keywords from the research questions for searching the aca-
demic publication databases. The keywords from research questions were: ”en-
vironment model”, ”model-based testing” and ”testing”. In order to cover all
syntactic combinations, we made search strings with syntactic variations of the
keyword terms. For instance, one of the search strings is shown below:

(”environment model” OR ”environment behavior model” OR ”environmental
model” OR ”environmental modelling” OR ”environment modelling” OR
”environment modeling” OR ”environmental modeling”) AND (”model-based
testing” OR ”model based testing”OR testing OR test OR ”software testing”)

For each database, we changed the search string to adjust with the database in-
put formats. For instance, some of the databases do not allow conditional searches
(i.e., using Boolean AND and OR to operators) or nesting searches, therefor we
have split the sting and manually input it.

2.2.2 Sources of studies

The following electronic databases/libraries are searched using keywords defined
in the section above:

- ACM digital library

- IEEE Explore

- Science Direct

- Springer

- Google Scholar

3



2.2.3 Selection criteria

A set of inclusion and exclusion criteria has been defined in order to collect rele-
vant studies and filter out irrelevant ones. The inclusion criteria were as follows:

1. The objective of the study should be to discuss, apply or investigate the
environment model methodologies for the purpose of testing.

2. The studies must be written in English.

3. The study should be published in a journal or conference proceeding.

4. The study should answer at least one of the research questions.

5. The study should be published between years 2000 and 2014 (September).

The exclusion criteria are:

1. The studies for which only extended abstracts were available.

2. The papers about environmental engineering or biological studies or other
studies outside the scope of software engineering.

3. Master’s theses and Doctoral monographs. We assumed that these works
have been reported and presented as conference or journal publications.

The inclusion and exclusion criteria were applied during the selection process in
parallel with reading the full papers.

The studies that are selected after the selection procedure are known as pri-
mary studies and used in the analyses. Different papers that describe the same
environment modeling approaches and have same authors are marked as linked
papers [58]. We include linked papers in primary studies because they investigate
their approaches in different testing purposes and the results can be useful for the
analyses.

The studies with the same authors and same contribution in different publi-
cation databases are marked as repeated papers, and we only included the most
recent study or the most comprehensive study.

2.2.4 Procedure of selecting primary studies

Figure 1 gives an overview of the search and selection process. In the first round
of the search, we found 297 studies from publication database, which we selected
120 studies based on their titles and abstracts. After reading the content of these
studies and applying the selection criteria (mentioned in previous section), we
collected 63 studies.

In parallel with reading the content, we made a data extraction form in Excel
spread sheet to record details of each study. From each primary study we recorded
answers of the research questions along with other details such as year of publi-
cation, name of authors, etc. We synthesized the data for each research question

4



Redundancy

exclusion

Initial search

Content-based

selection

Title + Abstract 

selection

Reference scan 

(snowballing), 

authors search

Primary studies

120 studies

63 studies

68 studies

297 studies

61 studies

Round 1

Round 2

Figure 1: Paper selection process

and categorized the answers. In Section 3 the frequencies of the primary studies
for each category are reported.

During data extraction, we checked all related work for each paper and marked
the relevant references. The list of the references were used in second round of
the selection.

In the second round, we read all the related references and applied selection
criteria. This round is also known as snowballing [52]. In this round we selected
five more primary studies and recorded their details in the data extraction form.

After filling the information of all primary papers, we identified linked papers.
These papers help in finding the applicability areas of environment modeling in
MBT. Hence, we included them in the primary studies. Ten groups of linked
papers are identified and marked in the data extraction form. Moreover, we found
that some of the selected studies were redundant (i.e., identical papers that we
found from different databases). Seven studies were detected as redundant papers
and removed in the last stage of the selection procedure. Finally, we ended up
with a list of 61 papers.

Table 1 presents the databases that we used for searching the studies. Each
row belongs to one database and each column represents the number of selected
papers in each step (similar to Figure 1). The redundancy exclusion column shows
negative numbers indicates the number of papers that excluded in the last step.

5



The last column shows the final numbers of the primary studies from databases.
It should be noted that some of studies were found by Google Scholar whereas

they are originally from other databases. Therefore, we removed them from the
list of studies retrieved from Google Scholar. As a result, the numbers which is
shown in Table 1 is less than the actual number of papers that were found.

Table 1: The number of selected papers in each repository and in each step of SLR
Database
name

Initial
search

Title+Abs
Selection

Content-
based
selection

Reference
scan

Redundancy
exclusion

Primary
studies

ACM 33 12 7 8 -1 7
IEEE Explore 125 48 25 25 -1 24
ScienceDirect 26 7 4 4 0 4

Springer 72 36 20 22 -4 18
Google Scholar∗ 41 17 7 9 -1 8

Total 297 120 63 68 -7 61

* After removing the studies that were published in other databases

Figure 2 shows the number of primary studies from 2000-2014 by five years
interval. It indicates that in recent years there has been more attention towards
environment modeling in testing. It may be because of the growing rate of the
complexity of computer systems and applications and subsequently the testing
process is becoming more complex and using environment models as a technique
for reducing the complexity is becoming more popular.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

2000-2004 2005-2009 2010-2014

Figure 2: Number of primary papers by five years intervals

6



2.3 Quality Assessment
We independently assessed quality of each of the 61 primary studies, by a set of
questions. We used the quality assessment questions that are developed by Dybå
and Dingøsyr [28], with some changes to fit in our study. For instance, we include
lessons learnt papers to cover more range of studies.

1. Is the paper based on research?

2. Are the aims of the research understandable by the reader?

3. Is there a clear description of the context?

4. Was the research conducted properly to address the aims of the research?

5. Was there a evaluation process to compare related work or similar methods?

6. Was the data collected in a way that addressed the research issue?

7. Was the data analysis accurate?

8. Is there a clear statement of results?

9. Is the paper applicable in industry?

10. Do the conclusions address the aims of the research?

After measuring the quality of each paper, we calculate the quality scores of the 61
primary studies. The result shows that more than 84% of the studies are evaluated
to high and very high quality.

3 Results
In this section, we present how the literature answers the research questions. We
describe the results using the criteria we discussed earlier in Section 2.2.3. The in-
formation about the characteristics of environment models (RQ1), gives a picture
of understanding the role of environment model in testing (RQ2). We then focus
more on the types of systems (RQ3) and level of testing (RQ4). Next, we make
a list of modeling formalism, tools and methodologies that are based on environ-
ment models (RQ5). Finally, we look at the current limitations and challenges that
are reported by the literature (RQ6). Citations of the selected papers are given in
this section for further reading.

Figure 3 shows that out of 61 studies, 95% are empirical studies (i.e., experi-
ments on case studies). 5% were theoretical studies which are based on providing
concepts, formal definitions, methodology or references to other work.

A large percentage of the publications, 39%, comes from IEEE explore (24
papers), followed by 30% papers from Springer (18 papers). Google Scholar and
ACM have 14% and 11% respectively (8 and 7 papers). The reason that Google
Scholar has a small percentage is that we removed the studies that are originally

7



95 %

5 %

Emprical

Theoretical

Figure 3: Types of primary studies

11 %

39 %

7 %

30 %

14 %

ACM

IEEE Explore

ScienceDirect

Springer

Google Scholar

Figure 4: Distribution of the primary studies in databases

from other databases. Only 7% of the papers are selected from Science Direct (4
papers). Figure 4 shows distribution of the primary studies in different electronic
resources.

3.1 RQ1 - What are the characteristics of the environment mod-
els used for model-based testing?

All primary studies, either implicitly or explicitly, presented general characteris-
tics of using an environment model in their testing approaches. Table 2 lists the
main characteristics of an environment model and their frequencies in the refer-
enced primary studies. Below, we present them in more detail:

• Specific aspects of the SUT: An environment model can be specified in such
a way that only specific part(s) of the SUT will be tested. It can contain a test
scenario (test suit) to violate certain behaviors or functionality of the SUT.
We found 12 papers that identify environment models for testing certain
part(s) of the SUT.

8



• Nondeterminism: Three primary studies present environment models with
nondeterministic behavior. Nondeterministic models are especially useful
in modeling the environment of systems which have continuous and unpre-
dictable interactions with their environment [29].

• Include multiple entities: Ten papers presented their work using different
environment entities, such as users, other systems, or a part of the actual
environment (i.g. temperature or the sunlight). There are two ways in spec-
ifying multiple environments in a test model: it can be defined as a single
model containing all environment interactions, or it can be defined as multi-
ple environment components. In both cases, the environment model should
capture all assumptions of the environment.

• Dynamic and static behavior: Six papers clarified that environment mod-
els can have support of dynamic and static behaviors. Static behaviors
mostly indicate what are the inputs of the environment model into the SUT
and what type of data and properties are supported by the environment
model, whereas dynamic behaviors model the interactions of the environ-
ment model with the SUT, the timing properties and the order of test inputs
base on the current outputs at the time of testing [86].

• Abstraction: As we mentioned earlier, a model is an abstract specification
of the real world. Abstraction in environment models can be achieved by
ignoring internal interactions of the SUT. An abstract model can be defined
by restricting the range of input values, omitting some functions or reducing
the time span. Creating an environment model is one of the most challeng-
ing tasks in model-checking, because the model should be precise and at
the same time abstract [81]. Six papers in our review emphasize on the im-
portance of the abstraction level of the test model when using environment
models. Utting et al. point out the different abstraction issues related to
MBT [80].

• Control of time: Nine papers showed that environment models can be used
for testing the systems with timing properties, such as real-time systems.
Environment models generate timed input traces, which can occur in the
real environment, to ensure that the system can satisfy the specified timing
properties.

• Explicit behaviors: Having separate models for the SUT and its environ-
ment has advantages in modifying each of them separately. For instance,
when environment models are used in test generation, they typically encode
test goals. Whenever test requirements change, only the environment mod-
els should be changed. Six papers argue that environment models used in
MBT have explicit nature depicting the expected behavior of the system.

9



• Source of knowledge for modeling: The source of knowledge about an en-
vironment can come from the requirements, or from the assumptions of the
test designers. The requirements are a list of the specifications that a system
must follow and need to be tested. But, when the system specifications are
not available, the assumptions of the environment can be observed from the
actual environment and then formally can be defined. From the literature,
we found that seventeen papers define their environment models from the
requirements that are provided in the documentation of the SUT. Sixteen pa-
pers explicitly claimed that they define their environment via assumptions.

Table 2: Main characteristics of environment models
Characteristics References #

Specific aspects of the
SUT

[2, 14, 24, 27, 33, 36, 43, 50, 60, 63,
73, 77]

12

Non-determinism [48, 61, 76] 3
Include multiple enti-
ties

[2, 15, 32, 39, 43, 46, 55, 57, 69, 76] 10

Dynamic and static be-
havior

[9, 21, 25, 50, 68, 86] 6

Abstraction [6, 9, 12, 32, 41, 45] 6
Control of time [6, 25, 27, 36, 46, 55, 68, 66, 76] 9
Explicit behaviors [9, 33, 34, 38, 43, 64] 6
Source of knowledge
for modeling

Requirements [13, 14, 16, 21, 24,
36, 39, 43, 48, 45, 49, 55, 61, 63,
64, 76, 78]
Assumptions [2, 3, 4, 5, 17, 32, 34,
57, 60, 69, 71, 77, 81, 83, 84, 85]

33

3.2 RQ2 - What are the advantages of using environment mod-
els in testing?

Based on the MBT taxonomy illustrated by Utting et al. [80], testing of a system
using MBT consists of three main dimensions: modeling, test generation and test
execution. Based of our findings, environment modeling brings the following
benefits:

• Test oracle creation: In MBT, a test oracle is usually encoded in the test
model, and during test generation it is assigned to the generated test cases [60,
80]. Thus, an environment model is useful in automatically creating test or-
acles. Three of the primary studies discussed explicitly about test oracle
generation using environment models.

10



• Automated test generation: Twelve papers present that environment models
are used to generate test inputs for the SUT during testing. It prevents the
human errors that might occur with manual testing, and reduces the time of
generating test cases. Furthermore, two papers claim that the advantage of
automating test generation can lead to a test harness, which is a collection of
test data used to automatically run the tests and monitor the outputs [24, 56].

• Optimal test generation: In five papers, optimized test case generation is
discussed as a benefit of using environment models in testing, making the
testing process more efficient. It is caused by having support of abstraction
in environment modeling.

• Reducing the size of the state space: One of the main issues in executing
and simulation of complex models (or models with wide range of inputs)
is that the number of symbolic states that should be explored increases dur-
ing the test execution, and thus the memory of the test machine will be
fulled. This problem is known as state space explosion. Five studies re-
port that well-defined environment models significantly reduce the search
space by constraining the ranges of certain test inputs. Reducing the size of
state space can be done by defining a limited range of numbers instead of
defining a general data types, resetting the clock variables after passing the
corresponding state, or defining model invariants which limit the enabled
states at a given time.

• Early validation of requirements: Using explicit environment models can
be helpful for validating the requirements in the early stage of the system
design. They can be used to guide the simulation of early prototypes of the
SUT. Two papers explain this as an advantage of using environment models.

• Re-usability: Five papers report that with the same environment model,
different SUTs or different versions (regression) of the same SUT can be
tested. Generally, environment models will be changed relatively rarely un-
less some errors are discovered from the requirements during testing. There-
fore, the modeling efforts can be reduced by using same models in different
testing contexts.

Table 3 presents a list of studies, which show how environment models can be
useful in testing.

3.3 RQ3 - To which types of systems are environment models
applied?

In this section, we aimed to synthesis our findings in which types of systems
environment models have been used in the literature.

11



Table 3: Advantages of using environment models
Advantage References # of studies
Test oracle creation [50, 60, 80] 3
Automated test generation [9, 11, 14, 15, 24, 27, 41, 56,

60, 71, 73, 78]
12

Optimal test generation [33, 43, 49, 70, 88] 5
Smaller size of state space [63, 73, 81, 77, 85] 5
Early validation of require-
ments

[15, 39] 2

Re-usability [11, 12, 22, 38, 39] 5

The types of systems can be divided into two categories, the systems con-
taining hardware and software, and systems which are pure software. The first
category includes different systems as introduced below:

- Real-time Systems: Systems with timing properties and activities, that
must be performed within specific timing constraints [67].

- Reactive systems: Systems with continuous behavior interacting with their
environment. A reactive system receives inputs from the environment and
based on its configurations, changes its internal states and sends the outputs
as results to the environment [59].

- Hybrid systems: Systems which combine two or more different systems.
Hybrid systems may preform both continuous and discrete behaviors [40].

- Embedded systems: Systems with dedicated design or function for a part
of hardware, dealing with the control of physical environment through sen-
sors and actuators [31].

Embedded systems can act as both reactive systems and real-time systems. Thus,
we present them in either the domain of real-time systems (for the real-time em-
bedded systems) or reactive systems (for the reactive embedded systems).

The second category is defined as follow:

- Software systems: Software applications or programs which are based on
interactions between their components, describing a system of a part of a
system [37].

The majority of the studies are in the field of testing the first category. In total,
49 papers belong to this category, whereas 10 papers targeted to software systems.

A large number of studies are on applying environment models in testing real-
time and embedded systems. Thirty-two studies present using environment mod-
els in testing time constrained systems. It is because the environment models can

12



54 %

26 %

3 %

17 %

Real-time

Reactive

Hybrid

software

Figure 5: Distribution of application domains using environment models

control the timing of the SUT and also provides test cases to verify timing prop-
erties (as discussed in RQ1).

Fifteen papers used environment models for testing reactive systems, that con-
tains continuous communications with its environment. Only two studies were
found experimenting environment models on hybrid systems.

Ten papers used environment models in testing software components. When
the entire software is not complete and a component needs to be tested, then an
environment model of the whole software represents the behavior of the complete
software in order to test the component. Table 4 lists system domains which are
studied using environment models as identified in 59 primary studies.

Table 4: System domains using environment models
System domains References # of studies
Real-time & Embedded
systems

[2, 3, 4, 5, 9, 13, 12, 16, 22, 23, 24,
25, 34, 36, 39, 41, 42, 43, 45, 46,
55, 56, 57, 60, 63, 64, 66, 69, 76,
82, 84, 86]

32

Reactive systems [11, 13, 14, 15, 27, 38, 47, 48, 49,
50, 68, 73, 74, 78, 83]

15

Hybrid systems [6, 87] 2
Software systems [18, 17, 21, 32, 61, 71, 77, 33, 85,

88]
10

As the result of synthesizing the data, we identified that 54% of the primary
studies investigate on real-time and embedded systems, 26% stud are about reac-
tive systems and 17% experiment on software developments. Only 3% of total
studies present testing in hybrid and embedded systems. Figure 5 shows the por-
tion of each application domain in form of a pie chart.

13



3.4 RQ4 - At which testing levels are the environment models
applied?

Based on our search results we could classify the papers as falling into two cate-
gories: functional and non-functional testing.

3.4.1 Functional Testing:

We categorize the primary studies based on different levels of testing by further
analysis we find in which testing purposes environment modeling process has been
applied.

Forty-three papers investigate testing with environment models at system level.
The whole SUT is modeled along with its environment, and the test cases validate
the functionality of whole system.

We found three studies that used environment models in integration testing,
which verifies that different components work properly together.

Six papers focus on unit testing with environment models. Unit testing is
mostly applied in testing software components and the environment model is spec-
ified as a model of a complete software, producing the input data for the compo-
nent.

Table 5 presents different testing levels using environment models.

Table 5: Environment models in testing levels
Testing Level References # of studies
System [2, 3, 4, 5, 6, 14, 16, 21, 22, 23, 24, 25, 27, 32,

34, 36, 39, 38, 42, 41, 43, 46, 45, 47, 48, 49, 50,
55, 60, 61, 63, 64, 66, 74, 76, 78, 81, 82, 83, 84,
85, 86, 87]

43

Integration [57, 69, 73] 3
Unit [10, 17, 56, 71, 77, 88] 6

3.4.2 Non-Functional Testing:

With further analyses, we identified that environment models are mostly employed
in some certain non-functional testing approaches.

As it can be seen in Table 6, five papers report using environment models
for testing safety and reliability of the SUT. An environment model can include
hazardous states and by generating wrong inputs, which put the SUT into hazard.
The responses of the SUT show how the system is safe against different hazardous
states.

Few studies applied environment modeling on robustness testing, which is a
crucial part of the verification process using invalid behaviors of the SUT to de-
tect errors. For robustness testing, the environment model should provide stressful

14



conditions and invalid events to check the correctness of the SUT. This is impor-
tant for testing critical systems where the behavior of the environment can not be
predicted easily.

Three studies discuss applying environment models for regression testing,
which indicates that by modifying the SUT, same environment model can be used
to check the validity of the new version of the SUT.

Table 6: Non-functional testing approaches using environment models
Testing types References # of studies
Safety testing [14, 16, 21, 57, 62] 5
Robustness testing [45, 84] 2
Regression testing [8, 15, 18] 3

3.5 RQ5 - What formalism and tools have been used for testing
with environment models?

We detected a large range of modeling languages and variety of modeling and
testing tools from the primary studies. In this section, we provide the list of the
languages and tools and their references and briefly discuss some of the most
referenced tools and explain how the environment models are defined.

The majority of the studies use the Unified Modeling Language (UML) [75]
as the modeling language. In our review, 20 papers build on UML either by us-
ing its standard behavioral diagrams such as sequence and state diagrams, or use
UML profiles such as MARTE [1], SysML [30] and MbRTE (Executable model-
based robustness testing environment) [84]. The structure of the environment is a
domain model (i.e., a model that describes all various entities and their relation-
ships) and one or more environment components. The domain model provides the
information of all relationships and properties between the components. In case
of robustness testing, it can have some hazardous states for modeling hazardous
test inputs.

Six papers present MBT approaches using Timed Automata (TA) [7]. The
tools for modeling with TA are UPPAAL, its online testing tool (UPPAAL TRON)
and Maude. UPPAAL is a model-checker which allows simulation and verifica-
tion of TA-based specifications. The environment models can be specified UP-
PAAL as deterministic or non-deterministic. UPPAAL-TRON is online testing
tool that generates test cases from the test models and execute them against the
SUT [65].

Maude is a language and system supporting both equational and rewriting
logic computation. It represents model generation rules by rewriting, instead of
describing a model directly [66]. It can be applied for modifying the timed au-
tomata.

15



Table 7: Formalism and tools for environment modeling
Formalism Tools and references #
UML UML diagrams [16, 39, 38, 45, 48, 57, 60, 73,

85, 87]
10

UML/MARTE [9, 41, 42, 46, 47] 5
UML Fondue [23, 68] 2
UML/SysML [30] 1
ESML[54] 1
MbRTE [84] 1

Timed
Automata

UPPAAL [36, 43, 63, 64] 4

UPPAAL TRON[76] 1
Maude [66] 1

Event Gram-
mar

AEG [11, 12, 13, 14, 15, 78] 6

Petri nets TINA [2, 3, 4, 5] 4
Lutin Lurette [49, 50, 62] 3
Java BEG[71, 77] 2
QR QR models [6, 83] 2
TSML AUTOSAR[69] 1
Esterel Esterel[24] 1
SPIN Promela [25] 1
TML JUMBL [74] 1
Markov
model

Markov model[21] 1

TTCN-3 TTCN-3 [27] 1
SLAM SLAM [17] 1
DoB Degree-of-Belief(DoB)[32] 1
BLAST BLAST[56] 1

Six papers presented their experiments on testing with Attributed Event Gram-
mar (AEG) [14] , which is built for testing real-time and embedded systems. Event
grammars are text-based and are appropriate in specifying the dynamic environ-
ment with arbitrary number of actors and events. Models based on event grammars
can be designed only for the environment or, for the environment and the SUT. It
also can contain hazardous states to assess the safety of the SUT. The environment
models can be used to automatically generate test cases.

Four studies are based on Petri Nets [35], using the TINA tool (TIme Petri
Net Analyser) [20]. TINA is a software environment for the editing and analysis
of Petri nets and Timed Petri nets. The environment models in TINA have same
properties as the models defined in UPPAAL. Similar, to UPPAAL, the environ-
ment model support non-determinism and also deterministic assumptions.

16



Three papers presented testing with Lutin language [72], with environment
models based on Lurette [51]. Lutin is a test-based language for specifying ran-
dom reactive behaviors, and specially developed for modeling and testing reactive
systems. Lurette is a test generator which provides random or guided test cases.

Two studies show how environment model can be designed in the Bandera
Environment Generator (BEG) [77], a tool that automates the generation of envi-
ronments for model-checking the Java programs. The tool is able to decompose
a given java program into small modules and create the environment program out
of it. Due to lack of space, we refer to the reader the overview of the remaining
languages and tools in Table 7.

3.6 RQ6 - What problems and challenges have been observed
by researchers using environment models in testing?

From all studies, we identified several studies that describe limitations and prob-
lems that occur using environment models in testing software applications or com-
puter systems.

One of the main problems that is reported when applying environment models
in case studies is that for the tests generated from multiple environment models,
multiple test adaption is needed since the interactions among the environments as
well as the environments and the SUT are usually integrated. The test adapter are
written manually and thus it is not an efficient process (i.e., in [69]).

Modeling an environment with multiple entities (modular or aspects) should
be carefully done, because it is complicated to define inter-relations among small
modules. Kishi and Noda study modular environment (context) modeling for an-
alyzing safety of their case study [57]. They emphasize on the importance of
having a strategy for defining environment modules.

Once an environment model is specified, it will be changed seldom unless
there are significant modifications in the requirements or there are some errors in
test generation during testing. Therefore, as mentioned in [14], the tests which
are derived from the environment model can be reused for regression testing. Re-
usability of the environment models is an open research question and should be
investigated.

Robustness testing by environment models is studied in a small number of
papers. However, it is still a challenge to expand the environment modeling in
complex systems and for more complicated environments [84].

4 Validity threats
There are three main threats subjected to our SLR. One is related to studies that
we might have missed in our search. Despite the fact that we followed all the
steps mentioned in systematic review process, we cannot be certain that all of

17



the approaches that use environment models in MBT have been identified. Some
exclusions were made where reading titles and abstracts. However, in the second
round of the search (snowballing), we did the effort of finding all the studies that
were we did not find (or excluded) in the initial round.

Another threat is that the measurements may not be reliable. This can be
caused from lack of reliability in the searching the resources, or from the lack
of metrics of comparing and selecting the papers. We made all efforts to obtain
all published studies that are available in the databases. For each resource, we
recorded the details and the information about how and where we searched, in
order to make the search repeatable in the future. Moreover, as mentioned in the
search and selection process, we searched several different repositories as well as
books, conference proceedings and journals, where the most updated works and
tools are presented.

Moreover, judgmental errors may have happened during the classification of
the papers. We followed the classifications that are defined by the literature. Be-
sides, for each classification, we provide the referenced definition, to prevent am-
biguity.

5 Discussion and Conclusions

In this SLR, we defined research questions about environment modeling in MBT.
We searched for the keywords in different resources based on the defined inclusion
and exclusion criteria. Sixty-one primary studies are found answering the research
questions and the data are extracted and analyzed.

One of the initial conclusions is that many of the identified studies use envi-
ronment models for testing, but without discussing explicitly how the environment
models are created and the process being it. Methodological aspect of creating en-
vironment models are only discussed in a limited number of papers.

In the further analysis, we classified the studies based on different concepts:
system types and testing levels. The results show that majority of the studies
employ the environment models in real-time and embedded systems. The reason
might be that as a characteristic of the environment models, they are able to model
and focus test generation on the timing constraints of the system under test.

It was also concluded that the environment models are mostly applied for sys-
tem level testing and there are very few studies related to the other testing levels
(integration and unit testing). We argue that the reason behind this might be stem
the other main characteristic of the environment model (abstraction), which fo-
cuses on a system in abstract way and does not go into the details of the system
components or their internal communications. More work is necessary in using
environment models for testing at lower levels of the testing process.

While scanning the primary studies, we also found a few papers describing
environment models in non-functional testing approaches such as safety testing,

18



robustness testing and regression testing. The approaches presented in these pa-
pers rely on the the explicit behavior exhibited by environment models which
facilitates the modeling and testing of non functional properties without modify-
ing any part of the SUT. For instance, in the context of testing safety properties,
environment models were used for modeling hazardous states which violate the
properties of the SUT.

The formalism and modeling tools used in the context of environment models
have also been presented along with their references. The results show that most
of the studies use UML or its different profiles as the base of the modeling the
environments. Timed Automata, in particular UPPAAL Timed Automata is also
a popular formalism in modeling and simulating test models with their environ-
ment. One of the advantages of using UPPAAL is that it allows the simulation
and verification of timing properties of real-time systems. Another major work
in investigating environment modeling is done in AEG, where the environment is
based on a set of event grammars and applied for safety assessment in different
case studies.

The limitations and current challenges in testing with environment models
were summarized as well. The studies report that although the environment mod-
eling helps in the automation of test case generation, yet some case test cases are
written manually. Also, the transformation from the symbolic test cases to test
scripts is still a manual process.

More research is needed to develop some statistical methods to evaluate and
analyze the applicability of environment models in MBT. As noted by Auguston,
more empirical evaluations is required in the case of large and complex SUTs with
large number of test cases automated by the environment [14].

As mentioned earlier, one of the advantages of using environment models is
reusing same models for different testing purposes. There is not enough work
practicing environment modeling in regression testing.

Re-usability of environment models in testing new versions of a software/hardware
should be experimented [39]. There are very few reports, though, about using
environment models in hybrid systems. The communications among diverse ap-
plications with environments as well as communication among the environments
themselves should be studied.

From the literature, we clearly conclude that there is still plenty of potential
for investigating environment modeling and automating test generation specially
w.r.t. non-functional testing approaches. Extensions of the current methodologies
are needed to overcome these limitations.

References

[1] The UML Profile for MARTE: Modeling and Analysis of Real-Time and
Embedded Systems. http://www.omgmarte.org/, 2013. [Online;

19



accessed 22-December-2014].

[2] N. Adjir, P. De Saqui-Sannes, and K. Rahmouni. Testing Real-Time Systems
Using TINA. In M. Núñez, P. Baker, and M. Merayo, editors, Testing of
Software and Communication Systems, volume 5826 of LNCS, pages 1–15.
Springer Berlin Heidelberg, 2009.

[3] N. Adjir, P. de Saqui-Sannes, and K. M. Rahmouni. Test of preemptive real-
time systems. In Computer Systems and Applications, 2008. AICCSA 2008.
IEEE/ACS International Conference on, pages 734–742. IEEE, 2008.

[4] N. Adjir, P. de Saqui-Sannes, and M. K. Rahmouni. Time-optimal real-time
test case generation using prioritized time petri nets. In Advances in Sys-
tem Testing and Validation Lifecycle, 2009. VALID’09. First International
Conference on, pages 110–116. IEEE, 2009.

[5] N. Adjir, P. d. S. Sannes, M. K. Rahmouni, and A. Adla. Timed test case
using labeled prioritized time petri nets. Computing Research Repository
(CoRR), 2012.

[6] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn. Model-based mutation
testing of hybrid systems. In Formal Methods for Components and Objects,
pages 228–249. Springer, 2010.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[8] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano,
and Z. Li. Model projection: simplifying models in response to restricting
the environment. In Proceedings of the 33rd International Conference on
Software Engineering, pages 291–300. ACM, 2011.

[9] A. Arcuri, M. Iqbal, and L. Briand. Black-box system testing of real-time
embedded systems using random and search-based testing. In A. Petrenko,
A. Simao, and J. Maldonado, editors, Testing Software and Systems, volume
6435 of Lecture Notes in Computer Science, pages 95–110. Springer Berlin
Heidelberg, 2010.

[10] C. Artho, K. Hayamizu, R. Ramler, and Y. Yamagata. With an open mind:
How to write good models. In Formal Techniques for Safety-Critical Sys-
tems, pages 3–18. Springer, 2014.

[11] M. Auguston. New directions in software quality assurance automation.
Technical report, DTIC Document, 2009.

[12] M. Auguston. Software architecture built from behavior models. ACM SIG-
SOFT Software Engineering Notes, 34(5):1–15, 2009.

20



[13] M. Auguston, J. B. Michael, and M.-T. Shing. Test automation and safety
assessment in rapid systems prototyping. In Rapid System Prototyping,
2005.(RSP 2005). The 16th IEEE International Workshop on, pages 188–
194. IEEE, 2005.

[14] M. Auguston, J. B. Michael, and M.-T. Shing. Environment behavior models
for automation of testing and assessment of system safety . Information and
Software Technology, 48(10):971 – 980, 2006. Advances in Model-based
Testing.

[15] M. Auguston, J. B. Michael, M.-T. Shing, and D. L. Floodeen. Using at-
tributed event grammar environment models for automated test generation
and software risk assessment of system-of-systems. 2005.

[16] J. Axelsson. Unified modeling of real-time control systems and their phys-
ical environments using uml. In Proceedings of the Eighth Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems, pages 18–25, 2001.

[17] T. Ball, V. Levin, and F. Xie. Automatic creation of environment models
via training. In K. Jensen and A. Podelski, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2988 of LNCS, pages
93–107. Springer Berlin Heidelberg, 2004.

[18] T. Bao and M. Jones. Test case generation using model checking for software
components deployed into new environments. In Software Testing, Verifica-
tion and Validation Workshops, 2009. ICSTW ’09. International Conference
on, pages 57–66, April 2009.

[19] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. Protocol for a
systematic literature review of motivation in software engineering. 2006.

[20] B. Berthomieu and F. Vernadat. Time petri nets analysis with tina. In Quan-
titative Evaluation of Systems, 2006. QEST 2006. Third International Con-
ference on, pages 123–124. IEEE, 2006.

[21] G. v. Bochmann, G.-V. Jourdan, and B. Wan. Improved usage model for
web application reliability testing. In Testing Software and Systems, pages
15–31. Springer, 2011.

[22] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann. What is
the benefit of a model-based design of embedded software systems in the
car industry. Emerging Technologies for the Evolution and Maintenance of
Software Models. IGI Global, pages 410–443, 2011.

21



[23] D. Buchs, L. Pedro, and L. Lúcio. Formal test generation from uml models.
In Dependable Systems: Software, Computing, Networks, pages 145–171.
Springer, 2006.

[24] S. M. Cho and J. W. Lee. Lightweight specification-based testing of memory
cards: A case study. Electronic Notes in Theoretical Computer Science,
111:73–91, 2005.

[25] D. Cofer and M. Rangarajan. Event-triggered environments for verification
of real-time systems. In Simulation Conference, 2003. Proceedings of the
2003 Winter, volume 1, pages 915–922 Vol.1, Dec 2003.

[26] H. R. Collard, S. Saint, and M. A. Matthay. Prevention of ventilator-
associated pneumonia: an evidence-based systematic review. Annals of In-
ternal Medicine, 138(6):494–501, 2003.

[27] W. Denissen. Amultidisciplinary model-based test and integration infras-
tructure. In Computer Aided Control System Design, 2006 IEEE Interna-
tional Conference on Control Applications, 2006 IEEE International Sym-
posium on Intelligent Control, 2006 IEEE, pages 1916–1921, Oct 2006.

[28] T. Dybå and T. Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50:833 – 859,
2008.

[29] G. Fraser and F. Wotawa. Test-Case Generation and Coverage Analysis for
Nondeterministic Systems Using Model-Checkers. In International Confer-
ence on Software Engineering Advances, pages 45–45, Aug 2007.

[30] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the
systems modeling language. Elsevier, 2011.

[31] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and design of
embedded systems. 1994.

[32] I. Gheta, M. Baum, A. Belkin, J. Beyerer, and U. D. Hanebeck. Three pil-
lar information management system for modeling the environment of au-
tonomous systems. In IEEE International Conference on Virtual Environ-
ments Human-Computer Interfaces and Measurement Systems (VECIMS),
pages 12–17. IEEE, 2010.

[33] W. Grieskamp. Multi-paradigmatic Model-Based Testing. In K. Havelund,
M. Nunez, G. Rosu, and B. Wolff, editors, Formal Approaches to Soft-
ware Testing and Runtime Verification, volume 4262 of LNCS, pages 1–19.
Springer Berlin Heidelberg, 2006.

22



[34] J. D. Griffith and S. J. Lee. Environment modeling for sense and avoid sensor
safety assessment. In IEEE/AIAA 30th Digital Avionics Systems Conference
(DASC), pages 5B5–1, 2011.

[35] M. Hack. Petri net language. 1976.

[36] J. Hänsel, D. Rose, P. Herber, and S. Glesner. An evolutionary algorithm
for the generation of timed test traces for embedded real-time systems. In
International Conference on Software Testing, Verification and Validation,
pages 170–179. IEEE, 2011.

[37] G. T. Heineman and W. T. Councill. Component-based software engineering.
Putting the Pieces Together, Addison-Westley, 2001.

[38] M. Heisel, D. Hatebur, T. Santen, and D. Seifen. Using uml environment
models for test case generation. In Software Engineering (Workshops), pages
399–406, 2008.

[39] M. Heisel, D. Hatebur, T. Santen, and D. Seifert. Testing Against Require-
ments Using UML Environment Models. Softwaretechnik-Trends, 28(3),
2008.

[40] T. A. Henzinger. The theory of hybrid automata. Springer, 2000.

[41] F. Herrera, P. Penil, H. Posadas, and E. Villar. A model-driven methodology
for the development of systemc executable environments. In Specification
and Design Languages (FDL), 2012 Forum on, pages 177–184. IEEE, 2012.

[42] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, and R. Valencia. A
mdd methodology for specification of embedded systems and automatic gen-
eration of fast configurable and executable performance models. In Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 529–538. ACM, 2012.

[43] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou.
Testing Real-Time Systems Using UPPAAL. In R. Hierons, J. Bowen, and
M. Harman, editors, Formal Methods and Testing, volume 4949 of LNCS,
pages 77–117. Springer Berlin Heidelberg, 2008.

[44] M. Iqbal, A. Arcuri, and L. Briand. Environment Modeling with
UML/MARTE to Support Black-Box System Testing for Real-Time Em-
bedded Systems: Methodology and Industrial Case Studies. In D. Petriu,
N. Rouquette, and Ø. Haugen, editors, Model Driven Engineering Lan-
guages and Systems, LNCS, pages 286–300. Springer Berlin Heidelberg,
2010.

23



[45] M. Iqbal, A. Arcuri, and L. Briand. Environment modeling and simulation
for automated testing of soft real-time embedded software. Software and
Systems Modeling, pages 1–42, 2013.

[46] M. Z. Iqbal, S. Ali, T. Yue, and L. Briand. Experiences of applying
UML/MARTE on three industrial projects. Springer, 2012.

[47] M. Z. Iqbal, S. Ali, T. Yue, and L. Briand. Applying UML/MARTE on indus-
trial projects: challenges, experiences, and guidelines. Software & Systems
Modeling, pages 1–19, 2014.

[48] M. Z. Iqbal, A. Arcuri, and L. Briand. Empirical Investigation of Search
Algorithms for Environment Model-based Testing of Real-time Embedded
Software. In Proceedings of the International Symposium on Software Test-
ing and Analysis, ISSTA, pages 199–209, New York, NY, USA, 2012. ACM.

[49] E. Jahier, S. Djoko-Djoko, C. Maiza, and E. Lafont. Environment-model
based testing of control systems: Case studies. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 636–650. Springer, 2014.

[50] E. Jahier, N. Halbwachs, and P. Raymond. Engineering functional require-
ments of reactive systems using synchronous languages. In Industrial Em-
bedded Systems (SIES), 2013 8th IEEE International Symposium on, pages
140–149. IEEE, 2013.

[51] E. Jahier, P. Raymond, and P. Baufreton. Case studies with lurette v2. Inter-
national Journal on Software Tools for Technology Transfer, 8(6):517–530,
2006.

[52] S. Jalali and C. Wohlin. Systematic Literature Studies: Database Searches
vs. Backward Snowballing. In Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM,
pages 29–38, New York, NY, USA, 2012. ACM.

[53] M. Jorgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. Software Engineering, IEEE Transactions on,
33(1):33–53, 2007.

[54] G. Karsai, S. Neema, and D. Sharp. Model-driven architecture for embed-
ded software: A synopsis and an example. Science of Computer Program-
ming, 73(1):26 – 38, 2008. Special Issue on Foundations and Applications
of Model Driven Architecture (MDA).

[55] G. Karsai, S. Neema, and D. Sharp. Model-driven architecture for embedded
software: A synopsis and an example. Science of Computer Programming,
73(1):26–38, 2008.

24



[56] M. Kim, Y. Kim, and H. Kim. A comparative study of software model
checkers as unit testing tools: An industrial case study. Software Engineer-
ing, IEEE Transactions on, 37(2):146–160, 2011.

[57] T. Kishi and N. Noda. Aspect-oriented context modeling for embedded sys-
tems. Early Aspects: Aspect-Oriented Requirements Engineering and Ar-
chitecture Design, page 69, 2004.

[58] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman. Systematic Literature Reviews in Software Engineering - A
Systematic Literature Review. Inf. Softw. Technol., 51(1):7–15, Jan. 2009.

[59] I. Kruger. Service-oriented software and systems engineering-a vision for
the automotive domain. In Formal Methods and Models for Co-Design,
2005. MEMOCODE’05. Proceedings. Third ACM and IEEE International
Conference on, page 150. IEEE, 2005.

[60] B. Kumar, B. Czybik, and J. Jasperneite. Model based TTCN-3 testing of
industrial automation systems; First results. In Conference on Emerging
Technologies Factory Automation, pages 1–4, 2011.

[61] A. Lakehal, F. Ouabdesselam, I. Parissis, and J. Vassy. Models for syn-
chronous software testing. In Model, Design and Validation, 2004. Proceed-
ings. 2004 First International Workshop on, pages 41–50, Nov 2004.

[62] A. Lakehal, F. Ouabdesselam, I. Parissis, and J. Vassy. Models for syn-
chronous software testing. In First International Workshop on Model, De-
sign and Validation, pages 41–50. IEEE, 2004.

[63] K. Larsen, M. Mikucionis, and B. Nielsen. Online Testing of Real-time
Systems Using Uppaal. In J. Grabowski and B. Nielsen, editors, Formal Ap-
proaches to Software Testing, volume 3395 of LNCS, pages 79–94. Springer
Berlin Heidelberg, 2005.

[64] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time
embedded software using uppaal-tron: an industrial case study. In Proceed-
ings of the 5th ACM international conference on Embedded software, pages
299–306. ACM, 2005.

[65] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time em-
bedded software using uppaal-tron: An industrial case study. In Proceedings
of the 5th ACM International Conference on Embedded Software, EMSOFT
’05, pages 299–306, New York, NY, USA, 2005. ACM.

[66] G. Li, S. Yuen, and M. Adachi. Environmental simulation of real-time sys-
tems with nested interrupts. In Theoretical Aspects of Software Engineering,

25



2009. TASE 2009. Third IEEE International Symposium on, pages 21–28,
July 2009.

[67] F. Liu, A. Narayanan, and Q. Bai. Real-time systems. 2000.

[68] L. Lucio, L. Pedro, and D. Buchs. A methodology and a framework for
model-based testing. In Rapid Integration of Software Engineering Tech-
niques, pages 57–70. Springer, 2005.

[69] M. Mews, J. Svacina, and S. Weissleder. From AUTOSAR Models to Co-
simulation for MiL-Testing in the Automotive Domain. In International
Conference on Software Testing, Verification and Validation, pages 519–528,
April 2012.

[70] M. Mikucionis, K. G. Larsen, and B. Nielsen. Online on-the-fly testing of
real-time systems. Citeseer, 2003.

[71] P. Parizek and F. Plasil. Specification and Generation of Environment for
Model Checking of Software Components . Electronic Notes in Theoretical
Computer Science, 176(2):143 – 154, 2007. Proceedings of the Workshop on
Formal Foundations of Embedded Software and Component-Based Software
Architectures (FESCA 2006).

[72] R. Pascal, R. Yvan, and J. Erwan. Lutin: A language for specifying and ex-
ecuting reactive scenarios. EURASIP Journal on Embedded Systems, 2008,
2008.

[73] A. Pretschner, O. Slotosch, E. Aiglstorfer, and S. Kriebel. Model-based
testing for real. International Journal on Software Tools for Technology
Transfer, 5(2-3):140–157, 2004.

[74] S. J. Prowell. Jumbl: A tool for model-based statistical testing. In System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International Con-
ference on, pages 9–pp. IEEE, 2003.

[75] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Ref-
erence Manual, The. Pearson Higher Education, 2004.

[76] C. Rütz and J. Schmaltz. An Experience Report on an Industrial Case-
Study about Timed Model-Based Testing with UPPAAL-TRON. In Inter-
national Conference on Software Testing, Verification and Validation Work-
shops, pages 39–46, March 2011.

[77] O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated environment genera-
tion for software model checking. In International Conference on Automated
Software Engineering, 2003. Proceedings. , pages 116–127, Oct 2003.

26



[78] H. Tummala, M. Auguston, J. B. Michael, M.-T. Shing, D. Little, and
Z. Pace. Implementation and analysis of environment behavior models as
a tool for testing real-time, reactive systems. In International Conference on
System of Systems Engineering,, pages 5–pp. IEEE/SMC, 2006.

[79] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[80] M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based
Testing Approaches. Softw. Test. Verif. Reliab., 22(5):297–312, Aug. 2012.

[81] W. Visser, M. B. Dwyer, and M. Whalen. The hidden models of model
checking. Software & Systems Modeling, 11(4):541–555, 2012.

[82] Y. Wang, Y. Wang, and C. Jiang. Theory and implemetion of simulation
testing framework for embedded software. In Reliability, Maintainability
and Safety (ICRMS), 2011 9th International Conference on, pages 751–756.
IEEE, 2011.

[83] F. Wotawa. Generating test-cases from qualitative knowledge preliminary
report. In Proceedings of the 21st Annual Workshop on Qualitative Reason-
ing, Aberystwyth, UK, 2007.

[84] S. Yang, B. Liu, Shihai, and M. Lu. Model-based robustness testing for
avionics-embedded software . Chinese Journal of Aeronautics, 26(3):730 –
740, 2013.

[85] K. Yatake and T. Aoki. Automatic generation of model checking scripts
based on environment modeling. In Model Checking Software, pages 58–75.
Springer, 2010.

[86] W. Yichen and W. Yikun. Model-based simulation testing for embedded
software. In 2011 Third International Conference on Communications and
Mobile Computing, pages 103–109, 2011.

[87] L. Yu, W. T. Tsai, Y. Jiang, and J. Gao. Generating test cases for context-
aware applications using bigraphs. In Software Security and Reliability, 2014
Eighth International Conference on, pages 137–146. IEEE, 2014.

[88] L. Zhang, T. Xie, N. Tillmann, P. De Halleux, X. Ma, and J. Lv. Environ-
ment modeling for automated testing of cloud applications. IEEE Software,
Special Issue on Software Engineering for Cloud Computing, 2012.

27



Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN XXX-XXX-XXX-X
ISSN 1239-1891


