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CROUZEIX'S CONJECTURE HOLDS FOR TRIDIAGONAL 3 \times 3
MATRICES WITH ELLIPTIC NUMERICAL RANGE CENTERED AT

AN EIGENVALUE\ast 

CHRISTER GLADER\dagger , MIKAEL KURULA\dagger , AND MIKAEL LINDSTR\"OM\dagger 

Abstract. Crouzeix stated the following conjecture in [Integral Equations Operator Theory, 48
(2004), pp. 461--477]: For every n\times n matrix A and every polynomial p, \| p(A)\| \leq 2maxz\in W (A)| p(z)| ,
where W (A) is the numerical range of A. We show that the conjecture holds in its strong, completely
bounded form, i.e., where p above is allowed to be any matrix-valued polynomial, for all tridiagonal

3\times 3 matrices with constant main diagonal,

\biggl[ 
a b1 0
c1 a b2
0 c2 a

\biggr] 
, a, bk, ck \in \BbbC , or equivalently, for all complex

3\times 3 matrices with elliptic numerical range and one eigenvalue at the center of the ellipse. We also
extend the main result of Choi in [Linear Algebra Appl., 438 (2013), pp. 3247--3257] slightly.

Key words. Crouzeix's conjecture, 3\times 3 matrix, elliptic numerical range

AMS subject classifications. 15A60, 15A45, 15A18

DOI. 10.1137/17M1110663

1. Introduction. In [4], Crouzeix made the conjecture, henceforth denoted by
(C), that for every square matrix A and every polynomial p,

(1) \| p(A)\| \leq 2 max
z\in W (A)

| p(z)| ,

where W (A) = \{ x\ast Ax : x\ast x = 1\} is the numerical range of A and \| \cdot \| denotes the
appropriate operator 2-norm. Crouzeix proved in [5] that even if A is an arbitrary
bounded linear operator on a Hilbert space, (C) holds if the bound 2 is replaced by
11.08, and very recently Crouzeix and Palencia proved in [7] that this bound can be
drastically reduced to 1 +

\surd 
2.

However, proving or disproving (C) in its general formulation, with the bound 2,
has turned out to be very challenging; therefore, partial results even on seemingly very
limited classes of matrices are interesting. Crouzeix [4] showed that the conjecture
holds for every 2\times 2 matrix. Later, in [8], Greenbaum and Choi proved the conjecture
for Jordan blocks of arbitrary size such that the lower left entry 0 is replaced by an
arbitrary scalar, and this was later extended to a wider class in [3]. In the appendix,
we prove the following slight extension of [3] which was stated without proof in [6].

Observation 1.1. (C) holds for all matrices that can be written as aI +DP or
aI + PD, where a \in \BbbC , D is a diagonal matrix, and P is a permutation matrix.

Our contribution in Observation 1.1 is that we allow permutations with multiple
cycles, whereas [3] focuses on the single-cycle case.

In this article, our principal aim is to prove the following result.
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Overton December 28, 2017; published electronically March 1, 2018.
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CROUZEIX'S CONJECTURE AND ELLIPTIC NUMERICAL RANGE 347

Theorem 1.2. Crouzeix's conjecture (C) holds for all matrices of the form

(2)

\left[  a b1 0
c1 a b2
0 c2 a

\right]  , a, bk, ck \in \BbbC ,

or equivalently, for all complex 3 \times 3 matrices with elliptic numerical range centered
at an eigenvalue.

The reader is kindly referred to the dissertation [2] for a nice overview of Crouzeix's
conjecture and a toolbox for studying the conjecture. The recent survey [6] describes
the situation a good ten years after (C) was originally formulated, along with some
ideas for numerical experiments. For general background on numerical range we refer
the reader to [9], and for the particular case of elliptic numerical range to [1, 12] or
the fundamental work [13].

One of the most successful approaches to establishing (C) for a certain class of
matrices is by using von Neumann's inequality [15], and that is the main approach
that we use in this paper, too: Let \BbbD be the open unit disk in \BbbC , and let A be a
square matrix which is a contraction in the operator 2-norm. Then von Neumann's
inequality asserts that

(3) \| g(A)\| \leq max
z\in \BbbD 

| g(z)| 

holds for all analytic functions g : \BbbD \rightarrow \BbbC which are continuous (and extended) up
to \partial \BbbD . Now suppose that A is any square matrix, and denote its numerical range
by W (A). In order to apply (3) to A, we need a bijective conformal mapping f
from the interior of W (A) to \BbbD ; this conformal map f can then be extended to a
homeomorphism of W (A) onto \BbbD . Next we need to find an invertible matrix X, such
that the similarity transform X f(A) X - 1 is a contraction and the condition number
of X satisfies

\kappa (X) := \| X\| \cdot \| X - 1\| \leq 2.

Then, by von Neumann's inequality, we get for any polynomial p that

(4)
\| p(A)\| = \| X - 1

\bigl( 
p \circ f - 1(Xf(A)X - 1)

\bigr) 
X\| 

\leq 2max
z\in \BbbD 

| p \circ f - 1(z)| = 2 max
z\in W (A)

| p(z)| ,

which establishes (1) for A. This argument can be shown to establish also the com-
pletely bounded version of (1). A result by Paulsen [16, Thm 9.11] shows that this
approach using von Neumann's inequality yields the best bound for the completely
bounded case.

The paper is organized as follows: In section 2 we parametrize the matrices
in Theorem 1.2 using two parameters, we parametrize a sufficiently large class of
similarity transformations X, and we discuss a conformal mapping from a normalized
elliptic numerical range onto the unit disk. Finally, in section 3, we prove Theorem
1.2 by considering four different cases.

We used Maxima [14] and Mathematica [17] for the more involved algebraic cal-
culations.

2. Parametrization of the matrices \bfitA and \bfitX , and a conformal mapping.
Theorem 1.2 can be proved by considering a family of matrices, parametrized on a
semi-infinite strip in the first quadrant.
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348 C. GLADER, M. KURULA, AND M. LINDSTR\"OM

Lemma 2.1. The following statements are equivalent:
1. (C) holds for the family (2).
2. (C) holds for all complex 3\times 3 matrices with elliptic numerical range centered

at an eigenvalue.
3. (C) holds for the family

(5) A :=

\left[  1 q/r r2  - 1/r2

0 0 qr
0 0  - 1

\right]  , q > 0, 0 < r \leq 1.

The matrix (5) has \sigma (A) = \{  - 1, 0, 1\} and W (A) is an ellipse with foci \pm 1.
Defining

(6) \mu := (r2 + 1/r2)2 + q2(r2 + 1/r2) - 2 and \rho :=

\sqrt{} 
\mu +

\sqrt{} 
\mu 2  - 4

2
,

we have that the major and minor axes of W (A) are \rho +1/\rho and \rho  - 1/\rho , respectively,
and \rho > 1.

Proof. (Step 1: Properties of A.) We have

d :=
q2

r2
+

\biggl( 
r2  - 1

r2

\biggr) 2

+ (qr)2 > 0,

and the number \lambda \in \sigma (A) in [12, Thm 2.2] is zero, so that W (A) is an ellipse with
foci \pm 1 and minor axis

\surd 
d =

\surd 
\mu  - 2. Moreover, by the definition of \rho ,

\rho \geq 

\sqrt{} 
\mu  - 

\sqrt{} 
\mu 2  - 4

2
=

1

\rho 
and

\biggl( 
\rho  - 1

\rho 

\biggr) 2

= \mu  - 2,

and so the minor axis has length \rho  - 1/\rho . Then the major axis is\sqrt{} 
(\rho  - 1/\rho )2 + 22 = \rho + 1/\rho .

By completing some squares in the definition of \mu , we see that \mu \geq 2 + 2q2, which in
turn implies that \mu 2 \geq 4 and \rho >

\surd 
1.

(Step 2: 3 implies 2.) Assume that (C) holds for the class (5), and let B \in \BbbC 3\times 3

be any matrix with elliptic numerical range and an eigenvalue at the center of W (A).
We need to show that (C) holds for B, too. One can find \BbbC \ni a \not = 0 and b \in \BbbC such
that B1 := aB + bI has spectrum \sigma (B1) = \{  - 1, 0, 1\} and the translated, rotated,
and scaled numerical range W (B1) then has its foci at \pm 1. Next calculate a Schur
decomposition of B1 = QUQ\ast (with U upper triangular) and select \theta 1, \theta 2 \in \BbbR such
that V := diag(1, ei\theta 1 , ei\theta 2) satisfies

B2 := V QB1(V Q)\ast =

\left[  1 2\alpha 2\gamma 
0 0 2\beta 
0 0  - 1

\right]  , \alpha , \beta \geq 0, \gamma \in \BbbC ;

observe that V Q is unitary. If \alpha = \beta = \gamma = 0, then B2 is diagonal and it satisfies (1)
in the following stronger form: for all polynomials p,

(7) \| p(B2)\| = \| diag
\bigl( 
p(1), p(0), p( - 1)

\bigr) 
\| = max

z\in \sigma (B2)
| p(z)| \leq max

z\in W (B2)
| p(z)| .
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CROUZEIX'S CONJECTURE AND ELLIPTIC NUMERICAL RANGE 349

This implies that B satisfies the same inequality, i.e., B satisfies (C). It remains to
study the case d := 4(\alpha 2 + \beta 2 + | \gamma | 2) > 0.

By [12, Thm 2.2], the assumed properties of B imply that

(8) 2\alpha \gamma \beta = \beta 2  - \alpha 2

and that the minor axis of W (B2) has length
\surd 
d. Next we define q := 2

\surd 
\alpha \beta \geq 0. By

(8), if q = 0, then \alpha = \beta = 0. In this case, the unitary matrix

Y :=

\left[  1 0 0
0 0 1
0 1 0

\right]  satisfies B3 := Y B2Y
\ast =

\left[  1 2\gamma 0
0  - 1 0
0 0 0

\right]  ,
and by [4, Thm 1.1], (C) holds for B3, and hence also for B. For the rest of the proof,
we assume that q > 0.

In the case q > 0, (8) implies that \gamma \in \BbbR , and then r :=
\sqrt{} \sqrt{} 

1 + \gamma 2 + \gamma is positive;

one easily verifies that r2  - 1/r2 = 2\gamma and r2 + 1/r2 =
\sqrt{} 
4 + 4\gamma 2. Moreover, by (8),

\alpha 2 = \beta 2  - 2\alpha \gamma \beta = (\beta  - \alpha \gamma )2  - \alpha 2\gamma 2 =\Rightarrow 
4(\beta  - \alpha \gamma )2 = \alpha 2(4 + 4\gamma 2) = \alpha 2(r2 + 1/r2)2 =\Rightarrow 

r2 + 1/r2 = | 2\beta /\alpha  - r2 + 1/r2| =\Rightarrow 2\beta = \pm 2\alpha r\pm 2.

Using \beta , \alpha \geq 0, r > 0, and the definition of q, we get 4\beta 2 = q2r2, i.e., 2\beta = qr; then
2\alpha = q2/2\beta = q/r. If r \leq 1, then B2 is of the form (5), and it thus satisfies (C) by
the working assumption.

If r > 1, then B2 is nevertheless equal to A in (5). Defining A\prime to be the matrix
in (5) but with r > 1 replaced by 1/r < 1, we get that (C) holds for A\prime . Moreover,
the unitary matrix

Z :=

\left[  0 0 1
0  - 1 0
1 0 0

\right]  satisfies ZA\prime Z\ast =  - A\ast ;

in particular, W (A\prime ) =  - W (A), where the bar denotes complex conjugate. (This
set in fact equals W (A).) Pick an arbitrary polynomial p and define the mirrored
conjugate polynomial \widetilde p(z) := (p( - z)). Using the invariance of the operator norm
under adjoints, we then obtain

\| p(A)\| = \| \widetilde p( - A\ast )\| = \| \widetilde p(A\prime )\| \leq 2 max
z\in W (A\prime )

| \widetilde p(z)| = 2 max
 - z\in W (A)

| p( - z)| .

(Step 3: 2 implies 1.) Assume that 2 holds, and denote the matrix in (2) by C;
its spectrum is

\sigma (C) =
\Bigl\{ 
a\pm 

\sqrt{} 
b1c1 + b2c2, a

\Bigr\} 
.

By [1, Thm 4.2], W (C) is an ellipse, and it is straightforward to verify that the
number \lambda in [12, Thm 2.3] equals a; hence the foci of W (C) are a \pm 

\surd 
b1c1 + b2c2

whose arithmetic average is a by that result.
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350 C. GLADER, M. KURULA, AND M. LINDSTR\"OM

(Step 4: 1 implies 3.) Fix q > 0 and r \in (0, 1]. The matrix A has Schur
decomposition

A = Q\ast 

\left[      
0

\sqrt{} 
1 + q2r2

r2
0

r2\sqrt{} 
1 + q2r2

0
qr
\sqrt{} 

1 + q2r2 + r4\sqrt{} 
1 + q2r2

0 0 0

\right]      Q,
where Q is the real, unitary matrix\left[         

\sqrt{} 
1 + q2r2\sqrt{} 

r4 + q2r2 + 1
 - qr3\sqrt{} 

1 + q2r2
\sqrt{} 
r4 + q2r2 + 1

r2\sqrt{} 
1 + q2r2

\sqrt{} 
r4 + q2r2 + 1

r2\sqrt{} 
r4 + q2r2 + 1

qr\sqrt{} 
r4 + q2r2 + 1

 - 1\sqrt{} 
r4 + q2r2 + 1

0
1\sqrt{} 

1 + q2r2
qr\sqrt{} 

1 + q2r2

\right]         
.

Since (C) is invariant under unitary similarity, the proof is complete.

In the rest of the paper, we restrict our attention to the matrix family A in (5).

Remark 2.2. We shall frequently use \rho as a parameter instead of q as follows:
solving (6) for q2, we get

(9) q2 =

\bigl( 
\rho + 1/\rho 

\bigr) 2  - \bigl( r2 + 1/r2
\bigr) 2

r2 + 1/r2
, \rho > 1, 1/

\surd 
\rho < r \leq 1 ;

indeed, q2 is increasing in r \in (0, 1], so that q > 0 if and only if r > 1/
\surd 
\rho . For this

choice of q, (5) becomes

(10) A =

\left[      
1

\sqrt{} 
r4\rho 4  - (1 + r8) \rho 2 + r4

r2
\surd 
r4 + 1 \rho 

r2  - 1/r2

0 0

\sqrt{} 
r4\rho 4  - (1 + r8) \rho 2 + r4\surd 

r4 + 1 \rho 
0 0  - 1

\right]      .
An advantage of this parametrization is that W (A) is uniquely determined by the
parameter \rho and hence independent of r.

Moreover, it is often also possible to consider the expression r2 + 1/r2 instead of
r. The advantage of this is that the degrees of some polynomials drop to a quarter.
We observe that r2+1/r2 is decreasing with r \in (0, 1], that 0 < r \leq 1/

\surd 
2 if and only

if r2 + 1/r2 \geq 5/2, and that 1/
\surd 
2 \leq r \leq 1 if and only if 2 \leq r2 + 1/r2 \leq 5/2.

With T2n denoting the 2nth Chebyshev polynomial of the first kind, the mapping

(11) f(z) =
2z

\rho 
exp

\Biggl( \infty \sum 
n=1

2 ( - 1)n T2n(z)

n (1 + \rho 4n)

\Biggr) 
in [10, pp. 373--374] maps the interior of the ellipse with foci \pm 1 and axes \rho \pm 1/\rho ,
\rho > 1, conformally onto \BbbD , with a continuous extension to all of W (A).1 Moreover,
f(A) is computed as follows.

1We point out that a number 2 is missing in [10].
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Lemma 2.3. The function f in (11) satisfies f(A) = cA, where

(12) c = f(1) =
2

\rho 

\infty \prod 
n=1

\biggl( 
1 + \rho  - 8n

1 + \rho 4 - 8n

\biggr) 2

< 1 .

Furthermore, we have the estimates c < 2
\rho for \rho > 1 and c < 2

\rho 
\surd 

1+4/\rho 4
for \rho \geq 

\surd 
2.

Proof. The point 1 is in the interior of W (A), and therefore f(1) \in \BbbD , which
implies that the real number f(1) is less than one. Since A has \sigma (A) = \{  - 1, 0, 1\} ,
there exists a matrix Z of eigenvectors such that A = Z diag(1, 0, - 1)Z - 1, and since
\sigma (A) \subset intW (A) and T2n( - 1) = T2n(1) = 1,

f(A) = Z f
\bigl( 
diag(1, 0, - 1)

\bigr) 
Z - 1 = Z diag(c, 0, - c)Z - 1 = cA;

see, e.g., [11, section 6.2].
Next we show that for \rho > 1, it holds that

(13)

\infty \sum 
n=1

2 ( - 1)n

n (1 + \rho 4n)
= 2

\infty \sum 
n=1

( - 1)n ln
\bigl( 
1 + \rho  - 4n

\bigr) 
.

We have \rho  - 4n \in (0, 1), and so by the formula for a geometric series,

\infty \sum 
n=1

2 ( - 1)n

n (1 + \rho 4n)
=

\infty \sum 
n=1

2 ( - 1)n

n\rho 4n

\infty \sum 
k=0

( - 1)k(\rho  - 4n)k

=

\infty \sum 
n=1

\infty \sum 
k=0

2 ( - 1)n

n
( - 1)k(\rho  - 4n)k+1.

Since
\sum \infty 
n=1

\sum \infty 
k=0

1
n (\rho 

 - 4n)k+1 < \infty , we can interchange the order of the summation
in the above double series in order to obtain

\infty \sum 
n=1

2 ( - 1)n

n (1 + \rho 4n)
=

\infty \sum 
k=0

\infty \sum 
n=1

2 ( - 1)n

n
( - 1)k

\Bigl( 
\rho  - 4(k+1)

\Bigr) n
.

Now we use that

ln
\Bigl( 
1 + \rho  - 4(k+1)

\Bigr) 
=

\infty \sum 
n=1

( - 1)n+1

n

\Bigl( 
\rho  - 4(k+1)

\Bigr) n
,

and (13) follows. As a consequence, the number c(\rho ) = f(1) in (11) can be written as

c(\rho ) =
2

\rho 
exp

\Biggl( 
2 lim
N\rightarrow \infty 

N\sum 
n=1

( - 1)n ln
\bigl( 
1 + \rho  - 4n

\bigr) \Biggr) 
=

2

\rho 
lim
N\rightarrow \infty 

N\prod 
n=1

\biggl( 
1 + \rho  - 8n

1 + \rho 4 - 8n

\biggr) 2

,

where we used the continuity of the exponential function, and this establishes (12).
Clearly, the series on the right-hand side (RHS) of (13) is alternating, with a

negative first term. Moreover, since 0 < \rho  - 4 < 1, the sequence 0 < \rho  - 4n < 1 is
decreasing with n, and then, so is ln

\bigl( 
1 + \rho  - 4n

\bigr) 
> 0. Hence, any truncation of the

series on the RHS of (13) to an even number of terms gives a strict overestimate of
the series, and combining this with the monotonicity of the exponential function, we
obtain that all truncations of the product in (12) yield strict overestimates of f(1).
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We obtain the overestimate c < 2/\rho by truncating to zero factors, and by truncating
to two factors, we obtain that for all \rho > 1,

c <
2 (1 + \rho  - 8)2 (1 + \rho  - 16)2

\rho \cdot (1 + \rho  - 4)2 (1 + \rho  - 12)2
.

Thus, the proof is complete once we establish that

2(1 + \rho  - 8)2(1 + \rho  - 16)2

\rho (1 + \rho  - 4)2(1 + \rho  - 12)2
\leq 2

\rho 
\sqrt{} 
1 + 4\rho  - 4

for \rho \geq 
\surd 
2. This amounts to proving, with t := \rho 4 \geq 4, that

(4 + \rho 4)(1 + \rho 8)4(1 + \rho 16)4

\rho 36(1 + \rho 4)4(1 + \rho 12)4
\leq 1 \Leftarrow \Rightarrow (4 + t)(1 + t2)4(1 + t4)4

t9(1 + t)4(1 + t3)4
\leq 1

\Leftarrow \Rightarrow q(t) := (4 + t)(1 + t2)4(1 + t4)4  - t9(1 + t)4(1 + t3)4 \leq 0 .

To verify the last inequality we expand q(t) and make some further estimates:

q(t) = 4 + t+ 16t2 + 4t3 + 40t4 + 10t5 + 80t6 + 20t7 + 124t8

+ 30t9 + 156t10 + 34t11 + 168t12 + 27t13 + 136t14

+ 18t15 + 96t16  - 5t17 + 52t18  - 2t19 + 16t20

 - 7t21 + 8t22  - 2t23 ,

and using t \geq 4, we have

q(t) \leq (4 + 1 + 16 + 4 + \cdot \cdot \cdot + 27 + 136 + 18 + 96)t16

 - 5t17 + 52t18  - 2t19 + 16t20  - 7 \cdot 4 \cdot t20 + 8t22  - 2 \cdot 4 \cdot t22

=964t16  - 5t17 + 52t18  - 2t19  - 12t20

\leq 964t16  - 5t17 + 52t18  - 2t19  - 12 \cdot 4 \cdot 4 \cdot t18

=964t16  - 5t17  - 140t18  - 2t19 \leq 964t16  - 5t17  - 140 \cdot 4 \cdot 4 \cdot t16  - 2t19

=  - 1276t16  - 5t17  - 2t19 < 0 .

Now, for similarity transformations with \kappa (X) \leq 2, we are able to apply (4) if
and only if

(14) \| Xf(A)X - 1\| = c \| XAX - 1\| \leq 1,

and we shall verify this inequality on a large portion of the semi-infinite strip in (5).
We finish this section by parametrizing a large class of upper triangular 3 \times 3

matrices X with \kappa (X) = 2. We were led to this class of similarity transformations by
solving the optimization problem

(15) argminX \| XAX - 1\| such that \kappa (X) \leq 2

numerically on grids covering various parts of the semistrip in (5).

Proposition 2.4. The matrix

X =

\left[  s t u
0 1 v
0 0 w

\right]  , s, t, u, v, w \in \BbbR ,
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has a singular value equal to 1 if and only if

(16) 2tuv = s2v2  - t2 + t2v2 + t2w2  - v2 .

Furthermore, X is invertible with \kappa (X) = 2, provided that 1/2 \leq sw \leq 2, and that

(17)
5

2
sw = s2 + t2 + u2 + v2 + w2.

Proof. The characteristic polynomial of X\ast X is

pX(\lambda ) :=\lambda 3  - (s2 + t2 + u2 + v2 + w2 + 1)\lambda 2

+
\bigl( 
s2  - 2tuv + u2 + (s2 + t2)v2 + (s2 + t2 + 1)w2

\bigr) 
\lambda  - s2w2,

and using
pX(1) = s2v2  - t2  - 2tuv + t2v2 + t2w2  - v2 = 0,

we get pX(\lambda ) = (\lambda  - 1)(\lambda 2  - \xi \lambda + \eta ), where

\xi := s2 + t2 + u2 + v2 + w2 and \eta := s2w2.

Hence, the squared singular values of X are

\sigma 2
1 = 1, \sigma 2

 - :=
\xi  - 

\sqrt{} 
\xi 2  - 4\eta 

2
, and \sigma 2

+ :=
\xi +

\sqrt{} 
\xi 2  - 4\eta 

2
.

The assumption \xi = 5
2

\surd 
\eta implies that \sigma 2

+ = 4\sigma 2
 - , and this in turn implies that

\sigma 2
+ = 2\sigma  - \sigma + = 2

\surd 
\eta = 2sw,

so that \sigma 2
 - = sw/2. Thus, \kappa (X)2 = \sigma 2

+/\sigma 
2
 - = 4 if \sigma  - \leq 1 \leq \sigma +, which is true because

it is equivalent to the assumption 1/2 \leq sw \leq 2.

Remark 2.5. If sw \not = 0 in Proposition 2.4, thenX is invertible andXAX - 1 equals
the matrix

G :=

\left[  1 \alpha \gamma 
0 0 \beta 
0 0  - 1

\right]  ,
where

\alpha =
qs - rt

r
, \beta =

qr  - v

w
, and \gamma =

qr3t - qrsv + r4s+ r2tv  - 2r2u - s

r2w
.

Calculation of the singular values gives that \| G\| 2 is the larger zero of the polynomial

(18) P (\lambda ) := \lambda 2  - (2 + \alpha 2 + \beta 2 + \gamma 2)\lambda + 1 + \alpha 2 + \beta 2 + \alpha 2\beta 2 ,

and since P (\lambda ) is a parabola with minimum at (2 + \alpha 2 + \beta 2 + \gamma 2)/2, the following
useful equivalence follows:

(19) | | XAX - 1| | \leq \mu \Leftarrow \Rightarrow P (\mu 2) \geq 0 and 2 + \alpha 2 + \beta 2 + \gamma 2 \leq 2\mu 2 .

The condition 2 + \alpha 2 + \beta 2 + \gamma 2 \leq 2\mu 2 can be replaced by the condition P \prime (\mu 2) \geq 0.

Using the family of similarity transformations in Proposition 2.4, we found the
rather optimal transformsX presented in the next section via elementary optimization
by hand combined with structural clues provided by the numerical solution of (15).
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2 4 6 8 10 12
ρ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r

Fig. 1. The area 1/
\surd 
\rho < r \leq 1 is bounded by the black curves. We show that (C) holds for

(\rho , r) under the blue dotted curve in section 3.1; after that we will add the narrow magenta semi-
strip that starts at \rho = 10, in section 3.2. In section 3.3, we do the case under the red dashed curve,
and in section 3.4, we finally prove that (C) holds for the remaining values of (\rho , r), i.e., the area
containing the upper-right corner of the picture. (Color available online.)

3. The proof of Theorem 1.2. Different similarity families X are required for
different choices of the parameters (\rho , r); the situation is illustrated in Figure 1. We
begin the study with the case where roughly r \leq 1/

\surd 
2.

3.1. The case of small \bfitr . The following gives (C) for a large subset of (\rho , r).

Proposition 3.1. The conjecture (C) holds for A provided that (\rho , r) satisfies
1/

\surd 
\rho < r \leq r1(\rho ), where r1(\rho ) is the unique positive root r of the equation (\rho > 1 is

fixed)

(20) p(r, \rho ) := 12r8 + r4
\biggl( 
3\rho 2 + 16 +

4

\rho 2

\biggr) 
 - 4 - \rho 2 = 0 .

The positive zero r1(\rho ) of p(\cdot , \rho ) depends continuously on, and increases strictly with,
\rho ; moreover, r1(\rho ) < 1/ 4

\surd 
3 for all \rho > 1.

Proof. Using the matrix X in Proposition 2.4 with the parameters

v = 0 , w = 1 , s =
1 + q2r2 + 4r4

2q2r2 + 2r4 + 2
,

t =
(2s - 1)q

2r
, and u =  - 

\sqrt{} 
(2 - s)(2s - 1) - 2t2\surd 

2
,

the reader may verify that X meets the sufficient conditions in Proposition 2.4; hence
\kappa (X) = 2. Moreover,

XAX - 1 =

\left[   1 q

2r

4r4  - 1

2r2
0 0 qr
0 0  - 1

\right]   ,
for which P (\lambda ) in (18) factors into

P (\lambda ) =

\biggl( 
\lambda  - 1 + q2r2

4r4

\biggr) \bigl( 
\lambda  - 4r4  - q2r2

\bigr) 
.
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Now we show that the RHS of (19) holds with the choice \mu = \rho /2, which implies
that \| XAX - 1\| \leq \rho /2 and hence c(\rho )\| XAX - 1\| < 1. To this end we note that for
r \geq 1/

\surd 
\rho ,

\rho 2

4
 - 1 + q2r2

4r4
=

(1 + \rho 2)(\rho r2  - 1)(\rho r2 + 1)

4\rho 2(r4 + 1)
> 0 and

\rho 2

4
 - 4r4  - q2r2 =

4 + \rho 2  - r4(3\rho 2 + 16 + 4/\rho 2) - 12r8

4(r4 + 1)
;

observe that the latter numerator is  - p(r, \rho ). We have that \partial p/\partial r > 0 for all r > 0,
and then it follows from 0 < r \leq r1(\rho ) that p(r, \rho ) \leq 0, so that P (\rho 2/4) \geq 0.
Moreover, 2 + \alpha 2 + \beta 2 + \gamma 2 \leq 2\rho 2/4, because

2 + \alpha 2 + \beta 2 + \gamma 2  - 2
\rho 2

4
=

p(r, \rho )

4(r4 + 1)
 - (1 + \rho 2)(\rho r2  - 1)(\rho r2 + 1)

4\rho 2(r4 + 1)
\leq 0.

Since p(\cdot , \rho ) is increasing on \BbbR + and quadratic in r4, it has at most one zero
r > 0, and considering that p(0, \rho ) < 0, we obtain that p has exactly one positive
zero. Finally, for r < 1/ 4

\surd 
3, it holds that

\partial p

\partial \rho 
=  - 2\rho (1 - 3r4) - 8r4/\rho 3 < 0,

and implicit differentiation gives

0 =
d

d\rho 
p
\bigl( 
r1(\rho ), \rho 

\bigr) 
=
\partial p

\partial r

\bigl( 
r1(\rho ), \rho 

\bigr) 
\cdot r\prime 1(\rho ) +

\partial p

\partial \rho 

\bigl( 
r1(\rho ), \rho 

\bigr) 
,

so that for r1(\rho ) < 1/ 4
\surd 
3,

r\prime 1(\rho ) =  - 
\partial p
\partial \rho 

\bigl( 
r1(\rho ), \rho 

\bigr) 
\partial p
\partial r

\bigl( 
r1(\rho ), \rho 

\bigr) > 0.

In particular, r1(\rho ) is continuous and strictly increasing with \rho as long as r1(\rho ) <
1/ 4

\surd 
3. Moreover, p(1/

\surd 
2, 2) = 0, so that r1(2) = 1/ 4

\surd 
4, and no \rho > 1 exists such

that r1(\rho ) = 1/ 4
\surd 
3, because

p

\biggl( 
1
4
\surd 
3
, \rho 

\biggr) 
=

4(1 + 2\rho 2)

3\rho 2
\not = 0.

We mention, but do not build on, the fact that r1(\rho ) in Proposition 3.1 increases
from 1/

\surd 
2 to 1/ 4

\surd 
3 as \rho runs from 2 to \infty .

3.2. A small extension for large \bfitrho . We next consider points (\rho , r) in the
semistrip \rho \geq 10, 0.75 \leq r \leq 0.77. Here it suffices to take

(21) X =

\left[  r/\surd 2 0 0
0 1 0

0 0 r
\surd 
2

\right]  
which clearly has \kappa (X) = 2. Moreover, the polynomial in (18) becomes

(22) P (\lambda ) = \lambda 2  - 

\Biggl( 
q2 + 1 +

1

4

\biggl( 
r2 +

1

r2

\biggr) 2
\Biggr) 
\lambda +

\biggl( 
1 +

q2

2

\biggr) 2

,

with q2 given by (9).
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Proposition 3.2. The conjecture (C) holds for A when \rho \geq 10 and r \leq 0.77.

Proof. First we note that with X and r1(\rho ) as in Proposition 3.1, for \rho \geq 10 it
holds that r1(\rho ) \geq r1(10) > 0.75, because p(r, 10) = 0 if and only if 300r8 +7901r4  - 
2600 = 0, which is easily solved for r4 > 0.325. Proposition 3.1 then gives that (C)
holds for \rho \geq 10 and 1/

\surd 
\rho < r \leq 0.75.

Now we consider the semistrip where \rho \geq 10 and 0.75 \leq r \leq 0.77, with X and
P (\lambda ) as given in (21) and (22). We introduce x := r2+1/r2 \in (2.2795, 2.35), which is
strictly decreasing in r \in [0, 1], and y := \rho + 1/\rho (strictly increasing in \rho > 1). Then
10 < y \leq 1.01 \rho for \rho \geq 10 and q2 = y2/x - x by (9).

Our plan is to verify the conditions in (19) for \mu := y/2.02; then by Lemma 2.3
it holds that

c \| XAX - 1\| \leq c
y

2.02
<

2

\rho 
\cdot \rho 
2
= 1.

The value of

P (\mu 2) =
\Bigl( y

2.02

\Bigr) 4
 - 
\biggl( \Bigl( x

2
 - 1
\Bigr) 2

+
y2

x

\biggr) 
\cdot 
\Bigl( y

2.02

\Bigr) 2
+

1

4

\biggl( 
2 - x+

y2

x

\biggr) 2

at x = 2.2795 and y = 10 is positive, and we will show that P (\mu 2) is increasing in
both x and y. Indeed,

2 \cdot 1012 x3 \partial P (\mu 
2)

\partial x
=  - 2 \cdot 1012 x3 + 1012 x4  - 2 \cdot 1012 x y2 + 5000x3 y2

 - 502 x4 y2  - 1012 y4 + 5000x y4,

where the RHS is larger than

 - 2 \cdot 1012 \cdot 2.353 + 1012 \cdot 2.27954  - 2 \cdot 1012 \cdot 2.35 y2 + 5000 \cdot 2.27953 y2

 - 502 \cdot 2.354 y2  - 1012 y4 + 5000 \cdot 2.2795 y4

=
2393

2
y4  - 103947096121

1600000
y2 +

170383737131921561

16000000000000
,

which is quadratic in y2 and positive with a positive derivative at y = 10. Hence
\partial P (\mu 2)/\partial x > 0 for the relevant values of x and y. By factorizing the partial derivative
w.r.t. y, we obtain that \partial P (\mu 2)/\partial y > 0 if and only if

(5000x - 1012)2 y2  - 1012(x2  - 2x)(1012  - 502x+ 1250x2) > 0,

which holds, since

(5000x - 1012)2 y2  - 1012(x2  - 2x)(1012  - 502x+ 1250x2)

> (5000x - 1012)2 \cdot 102  - 1012(x2  - 2x)(1012  - 502x+ 1250x2)

=  - 12751250x4 + 51005000x3 + 2344934599x2  - 9992879198x+ 10406040100 =: p(x)

satisfies p\prime \prime \prime (x) < 0 for x > 1, p\prime \prime (x) > 109 for x < 2.35, and p\prime (x) > 108, p(x) > 107

for x > 2.2795. Hence, P (\mu 2) > 0 for the considered values of x and y.
It remains only to verify the second condition in (19); y2/x  - x + 1 + x2/4 \leq 

2(y/2.02)2. This holds for 2.2795 < x < 2.35 and y > 10, because

y2 > 100 >
1.012 \cdot 2.35 \cdot (2.35 - 2)2

2 \cdot 2.2795 - 2.022
>

1.012 x (x - 2)2

2x - 2.022
.

The proof is complete.
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3.3. Diagonalization. For most of the cases r > 1/
\surd 
2 we will consider simi-

larities X for which there is some z \in \BbbR such that

(23) XAX - 1 =

\left[  1 z 0
0 0 z
0 0  - 1

\right]  ;

the norm squared of this matrix is 1 + z2. It turns out that the matrix

(24) X =

\left[     
s

sv

r2
r4s+ sv2  - s

2r2
0 1 v

0 0
r2

s

\right]     , s > 0,

achieves (23) with z = (qr  - v)s/r2. In (24), w = r2/s, so that ws = r2 \in [1/2, 1] for
1/

\surd 
2 \leq r \leq 1, and it is easy to verify that (16) holds, too. Therefore, \kappa (X) = 2 is

guaranteed if (17) holds. Solving (17) for v \geq 0, we find

(25) v =

\sqrt{} \surd 
2 r2s

\sqrt{} 
(2r2 + 1)(r2 + 2) - r4s2  - 2r4  - s2

s
;

hence (24) with this choice of v has \kappa (X) = 2, assuming that v \in \BbbR .
Proposition 3.3. The conjecture (C) holds for (\rho , r) satisfying

(26) r \geq 1
\surd 
\rho 

and 2
\bigl( 
\rho + 1/\rho 

\bigr) 2 \leq 
\biggl( 
r2 +

1

r2

\biggr) 2

+
5

2

\biggl( 
r2 +

1

r2

\biggr) 
.

Moreover, there exists a nonincreasing function r3(\rho ) such that one can write (26)
equivalently as 1/

\surd 
\rho \leq r \leq r3(\rho ), 1 < \rho \leq 2.

Proof. Assume that (\rho , r) satisfies (26). We can then find a matrix X which
diagonalizes A and has \kappa (X) = 2, and after that we can use a calculation very similar
to (7) to obtain

\| p(A)\| \leq \kappa (X) max
x\in \sigma (A)

| p(z)| 

for all polynomials, also in the completely bounded case. This is convenient, because
it spares us from the complication of dealing with c.

We again set x := r2+1/r2 and y := \rho +1/\rho in order to turn the second inequality
in (26) into

(27) 2y2 \leq x2 +
5

2
x,

and (25) becomes

(28) v =

\sqrt{} \surd 
2 r3s

\surd 
5 + 2x - r2s2x - 2r4

s
.

By (23), XAX - 1 is diagonal if and only if qr = v, and solving (28) equal to qr > 0
with respect to s gives

(29) s = r

\surd 
5 + 2x - 

\sqrt{} 
5 - 2x - 4q2\surd 

2 (q2 + x)
.
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Solving (9) for y2, we get y2 = q2x + x2, and substituting this into (27), we get
5  - 2x \geq 4q2; thus s > 0. Hence (C) is established using only the second inequality
in (26).

Already at the introduction (9) of \rho , we require that \rho > 1. Moreover, r \geq 1/
\surd 
\rho 

translates into x \leq y, and then 2y2 \leq x2 + 5x/2 \leq y2 + 5y/2 implies y \leq 5/2, i.e.,
\rho \leq 2. Solving 2y2 = x20 + 5x0/2 for x0 > 0, we get x0 =

\sqrt{} 
52/42 + 2y2  - 5/4 which

increases from 2 to 5/2 as \rho increases from
\surd 
2 to 2. Solving r2 + 1/r2 = x0 for r, we

get r3(\rho ) :=
\sqrt{} 
x0/2 - 

\sqrt{} 
x20/4 - 1 which decreases from 1 to 1/

\surd 
2 as \rho increases from

\surd 
2 to 2. For 1 < \rho <

\surd 
2, we simply set r3(\rho ) := 1. This is a nonincreasing function

r3 such that 1/
\surd 
\rho \leq r \leq r3(\rho ) and 1 < \rho \leq 2.

Conversely, if 1/
\surd 
\rho \leq r \leq r3(\rho ) and 1 < \rho \leq 2, then x \geq x0, so that 2y2 =

x20 + 5x0/2 \leq x2 + 5x/2, i.e., (26) holds for all \rho \geq 
\surd 
2. For 1 < \rho <

\surd 
2, we have

2y2 < 9 and r \leq 1 implies x \geq 2, so that x2 + 5x/2 \geq 9, i.e., (26) holds.

3.4. The final case: Large \bfitrho and \bfitr . In section 3.3, we determined s by the
condition that XAX - 1 is diagonal, which restricted us to quite a small region for
(\rho , r). Instead of requiring diagonality of the transform, we now choose s as a critical
point of \| XAX - 1\| 2.

Lemma 3.4. At a point (r, \rho ) with 1/
\surd 
2 \leq r \leq 1 it is possible to choose s > 0

and v \geq 0 such that X in (24) has \kappa (X) = 2 and

(30) \| XAX - 1\| 2 = \psi (x, y) :=
10y2  - 5x2  - 2y

\sqrt{} 
y2  - x2

\surd 
25 - 4x2

2x3
,

where x = r2 + 1/r2 and y = \rho + 1/\rho .

Proof. From (28) it follows that

(31) v2s2 = r3s
\surd 
10 + 4x - r2s2x - 2r4 ,

whose partial derivative with respect to s equals r3
\surd 
10 + 4x  - 2r2sx; by the chain

rule this is moreover equal to

2vs
d
\bigl( 
v(s) \cdot s

\bigr) 
ds

.

With z(s) =
\bigl( 
qr  - v(s)

\bigr) 
s/r2, the equation z\prime (s) = 0 implies that (v(s)s)\prime = qr, so

that
r2

\surd 
10 + 4x = 2qvs+ 2rsx

at a critical point of \| XAX - 1\| 2, and from this we get

(32) v2s2 =
10r4 + 4xr4  - 4r3sx

\surd 
10 + 4x+ 4r2s2x2

4q2
.

We wish to eliminate v and solve for s.
By (31), we have

4r3sx
\surd 
10 + 4x = 4xv2s2 + 4r2s2x2 + 8r4x ,

and substituting this into (32), we obtain that v \geq 0 is real if s is real, because
1/

\surd 
2 \leq r \leq 1 implies that 2 \leq x \leq 5/2 and

v2s2 =
(5 - 2x)r4

2q2 + 2x
\geq 0.

D
ow

nl
oa

de
d 

12
/1

1/
18

 to
 1

30
.2

32
.1

52
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CROUZEIX'S CONJECTURE AND ELLIPTIC NUMERICAL RANGE 359

Combining this with (31) gives

s2x - rs
\surd 
10 + 4x+ r2

\Bigl( 5 - 2x

2x+ 2q2
+ 2
\Bigr) 
= 0

which is a quadratic equation in s2 that no longer contains v. The smaller root

s =
r
\surd 
5 + 2x\surd 
2x

 - rq
\surd 
5 - 2x

x
\sqrt{} 

2x+ 2q2
,

is real and strictly positive since 2 \leq x \leq 5/2.
For these choices of s and v, sw = r2 \in [1/2, 1], so that \kappa (X) = 2, and

1 + z2 = 1 +
q2s2

r2
 - 2

qs2v

r3
+
s2v2

r4
= \psi (x, y).

This completes the proof.

Proposition 3.5. The conjecture (C) holds for A when r = 1.

Proof. Proposition 3.3 gives that (C) holds for r = 1 and 1 < \rho <
\surd 
2 and by

Lemma 2.3 we have the estimate c < 2

\rho 
\surd 

1+4/\rho 4
for \rho \geq 

\surd 
2. With r = 1 we have

x = 2 and

\psi (2, y) =
5y2  - 10 - 3y

\sqrt{} 
y2  - 4

8
=

4 + \rho 4

4\rho 2
;

note that y = \rho + 1/\rho and
\sqrt{} 
y2  - 4 = \rho  - 1/\rho . Thus c2\| XAX - 1\| 2 < 1.

The rest of the paper is based on the following lemma, which together with
Proposition 3.5 says that for a fixed \rho , it is enough to evaluate (30) at the point (\rho , r)
with the smallest relevant r.

Lemma 3.6. With x = r2 + 1/r2 and y = \rho + 1/\rho , assume that 2y \geq 
\surd 
5x+ 2x2

(which is the reverse of the second inequality in (26)). Then 1/
\surd 
2 \leq \tau \leq r \leq 1

implies that
\| XAX - 1\| 2 \leq max

\bigl( 
\psi (2, y), \psi (\tau 2 + 1/\tau 2, y)

\bigr) 
.

Proof. A calculation shows that

2x4
\sqrt{} 
y2  - x2

\sqrt{} 
25 - 4x2

\partial \psi 

\partial x
(x, y) = b - a

with a = (30y2  - 5x2)
\sqrt{} 
y2  - x2

\sqrt{} 
25 - 4x2

and b = 2y(75y2  - 8x2y2  - 50x2 + 4x4) .

From 2 \leq x \leq 5/2 and y \geq 
\surd 
5x+ 2x2/2 \geq x it follows that a \geq 0 and

b \geq 2y

\biggl( 
(75 - 8x2)

5x+ 2x2

4
 - 50x2 + 4x4

\biggr) 
\geq 0,

with strict inequalities if 2 \leq x < 5/2, i.e., 1/
\surd 
2 < r \leq 1. Then b + a > 0 and

\partial \psi 
\partial x (x, y) has the same sign as b2  - a2 \geq 0 for 2 \leq x < 5/2. Moreover,

b2  - a2 =  - x2(4y2  - 5x - 2x2)(4y2 + 5x - 2x2)
\bigl( 
(75 - 16x2)y2 + 25x2

\bigr) 
,

where clearly
4y2 + 5x - 2x2 \geq 4y2  - 5x - 2x2 \geq 0.
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Hence \partial \psi 
\partial x (x, y) \leq 0 is equivalent to (75 - 16x2)y2 + 25x2 \geq 0. Since y \geq 2 > 5/4, we

deduce that

\partial 

\partial x
\psi (x, y) \leq 0 if 2 \leq x \leq 

\sqrt{} 
75y2

16y2  - 25
,

\partial 

\partial x
\psi (x, y) \geq 0 if

\sqrt{} 
75y2

16y2  - 25
\leq x \leq 5

2
,

so that \psi (x, y) is minimized when x =
\surd 
75y/

\sqrt{} 
16y2  - 25, whose RHS is always in

(2, 5/2] for y \geq 5/2, i.e., \rho \geq 2.

Proposition 3.7. The conjecture (C) holds for 1 < \rho \leq 2.57.

Proof. In Proposition 3.3, we showed that (C) holds for all \rho \in (1,
\surd 
2] and for all

(\rho , r) with 1/
\surd 
\rho < r \leq r3(\rho ). Moreover, taking \tau = 1/

\surd 
2 in Lemma 3.6, we obtain

for r3(\rho ) \leq r \leq 1 that

\| XAX - 1\| 2 \leq max (\psi (2, y), \psi (5/2, y)) ,

and we proceed to show that the maximum equals \psi (2, y) for all y = \rho + 1/\rho < 2.96.
Defining F by

F (y) := \psi (2, y) - \psi (5/2, y) =
1

200

\Bigl( 
61y2  - 75y

\sqrt{} 
y2  - 4 - 50

\Bigr) 
,

we have F \prime (y) < 0 and F (2.96) > 0. Then \psi (r, y) \leq \psi (2, y) for all 1/
\surd 
2 \leq r \leq 1 and

\rho \leq 2.57 by Lemma 3.6, and the result now follows like in Proposition 3.5.

The next step is the following proposition.

Proposition 3.8. The conjecture (C) holds for 5/2 < \rho < 10.

Proof. In the notation of Proposition 3.1, p(x, y) = 0 can equivalently be written
as

(33) (\rho + 1/\rho )2 =
(1 + r4)(\rho 2 + 4 - 12r4)

4r4
,

and thus r1(\rho ) is the unique positive root r of this equation. By Lemma 3.6, it suffices
to show that \psi (r2 + 1/r2, \rho + 1/\rho ) \leq \rho 2/4 for r = r1(\rho ). In Figure 2 below, we give
numerical evidence for this inequality by plotting 4\psi /\rho 2 on the curve r = r1(\rho ) for
5/2 \leq \rho \leq 10.

Now we proceed to give logical proof of 4\psi /\rho 2 \leq 1. By (33),

y2 =
(1 + r4)(\rho 2 + 4 - 12r4)

4r4
and y2  - x2 =

(1 + r4)(\rho 2  - 16r4)

4r4
,

which satisfy y2 > 0 because r1(\rho ) < 1/ 4
\surd 
3, y2  - x2 > 0 since additionally \rho \geq 5/2,

and

\psi (x, y) =
10r2 + 5r2\rho 2  - 70r6  - 

\sqrt{} 
(\rho 2 + 4 - 12r4)(\rho 2  - 16r4)( - 4 + 17r4  - 4r8)

4(1 + r4)2
,

where one sees that  - 4 + 17r4  - 4r8 \geq 0 for r4 \in [1/4, 1/3] by calculating the values
at the end points. We shall next show that

10r2 + 5r2\rho 2  - 70r6  - (1 + r4)2\rho 2 \geq 0
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Fig. 2. The values of 4\| XAX - 1\| 2/\rho 2 on the curve r = r1(\rho ) for 5/2 \leq \rho \leq 10 compared to 1.

for \rho \in [5/2, 10] and r = r1(\rho ), and then the condition \psi (x, y) \leq \rho 2/4 is equivalent to

(34)

\bigl( 
10r2 + 5r2\rho 2  - 70r6  - (1 + r4)2\rho 2

\bigr) 2
 - 
\Bigl( \sqrt{} 

(\rho 2 + 4 - 12r4)(\rho 2  - 16r4)( - 4 + 17r4  - 4r8)
\Bigr) 2

\leq 0 .

Solving (33) for \rho 2 > 1 gives that r = r1(\rho ) implies

(35) \rho 2 = 2
3r8 + 4r4  - 1 +

\sqrt{} 
(1 + r4)(1 - 8r4 + 15r8 + 9r12)

1 - 3r4
,

and inserting (35) into the inequality 10r2  - 70r6 + 5r2\rho 2  - (1 + r4)2\rho 2 \geq 0 gives

p1(r
2) + p2(r

2)
\sqrt{} 
p3(r2)

1 - 3r4
\geq 0 ,

where
p1(t) := 2 - 4t2  - 60t3  - 20t4 + 240t5  - 20t6  - 6t8 ,

p2(t) :=  - 2 + 10t - 4t2  - 2t4 , and

p3(t) := (1 + t2)(1 - 8t2 + 15t4 + 9t6)

satisfy p1(1/2) + p2(1/2)
\sqrt{} 
p3(1/2) = 0. Furthermore, the polynomials p1, p2, and

p3 are all increasing on 1/2 \leq t < 1/
\surd 
3, because p\prime 3(t) \geq p\prime 3(1/2) = 25/16, p\prime 2(t) \geq 

p\prime 2(1/
\surd 
3) > 3, and in a similar fashion, p

(k)
1 > 0 for k = 5, 4, 3, 2, 1.

The inequality (34) can be written (1 + r4)2B(r, \rho ) \leq 0, where

B(r, \rho ) := \rho 4(5 - 10r2 + 2r4 + r8) + 4(5r2  - 4)(7r4  - 1)\rho 2 + 12r4(64r4  - 13) .

We are thus done once we have proved that B(r, \rho ) \leq 0 for the relevant values of r
and \rho . Substituting (35) into B(r, \rho ) gives (with 1 - 3r4 > 0)

(1 - 3r4)2

4
B(r, \rho ) = p4(r

2) + p5(r
2)
\sqrt{} 
p3(r2) ,
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where
p4(t) := 2 - 10t+ 2t2 + 10t3 + 19t4 + 410t5  - 812t6  - 1020t7

+ 2435t8  - 810t9 + 84t10 + 18t12 and

p5(t) := - 2 + 10t - 44t2 + 20t3 + 212t4  - 270t5 + 20t6 + 6t8 .

Therefore, the proof is complete once we show that

(36) p4(t) + p5(t)
\sqrt{} 
p3(t) \leq 0, t \in 

\bigl[ 
1/2, r1(10)

2
\bigr) 
;

recall that r1(\rho ) is increasing in \rho . With p in (20), we have p(2/
\surd 
7, 10) > 0 and by

the proof of Proposition 3.1, p(r, 10) is increasing in r, so that r1(\rho )
2 \leq 4/7.

For 1/2 \leq t \leq 0.5327, we consider p6(t) := p4(t)  - 2t12. It is straightforward to

check that p
(n)
6 (t) > 0 for n = 3, . . . , 10, and p

(n)
6 (t) < 0 for n = 1, 2. Hence p6(t) \geq 

p6(0.5327) > 0 for 1/2 \leq t \leq 0.5327. Defining p7(t) := p4(t) - t12, 0.5327 \leq t \leq 4/7,

it can analogously be shown that p4(t) > p7(t) > 0 by verifying that p
(n)
7 (t) > 0

for n = 2, . . . , 10, and p\prime 7(t) < 0; thus p4(t) > 0 on the interval 1/2 \leq t \leq 4/7.

Furthermore, p5(t) is negative and increasing in t \in [1/2, 4/7]; indeed, p
(n)
5 > 0 for

n = 1, 6 and p
(n)
5 < 0 for n = 2, . . . , 5, and we conclude that p5(t) \leq p5(4/7) < 0 for

1/2 \leq t \leq 4/7. Consequently, (36) is equivalent to

p8(t) := p4(t)
2  - p5(t)

2p3(t) \leq 0, 1/2 \leq t \leq 4/7 ,

where p8 can be factorized as p8(t) = t2(2t - 1)2(1 - 3t2)2 p9(t) with

p9(t) :=  - 140 + 120t+ 496t2  - 3116t3 + 4400t4 + 10364t5  - 38295t6

+ 12584t7 + 77722t8  - 69288t9 + 9009t10 + 1728t11 + 1728t12 .

We finish the proof by establishing that p9(t) \leq p9(4/7), which is negative, on

[1/2, 4/7]. Using repeated differentiation again, we obtain p
(10)
9 > 0, and then we

deduce p
(9)
9 > 0, p

(n)
9 < 0 for n = 8, 7, 6, and p

(n)
9 > 0 for n = 5, 4, . . . , 1.

The following proposition completes the proof of Theorem 1.2.

Proposition 3.9. The conjecture (C) holds for \rho \geq 10.

Proof. By Proposition 3.2, (C) holds for \rho \geq 10 and r \leq 0.77; therefore, fix
r = 0.77. By (30), \| XAX - 1\| 2 is the smaller zero of the parabola

Q(\lambda ) := 4
\bigl( 
4x4\lambda 2  - 20x(2y2  - x2)\lambda + 25x2 + 16y4  - 16x2y2

\bigr) 
.

If the inequality Q(\rho 2/4) \leq 0 holds for a given \rho \geq 10, then \| XAX - 1\| 2 \leq \rho 2/4, and
hence c2\| XAX - 1\| 2 \leq 1 is satisfied at r = 0.77 by Lemma 2.3. In this case, Lemma
3.6 and Proposition 3.5 establish (C) for all 0.77 \leq r \leq 1.

In order to verify that Q(\rho 2/4) \leq 0 for r = 0.77 and \rho \geq 10, we introduce a
positive, strictly increasing function

\alpha (\rho ) :=
\rho 2

y2
=

1

(1 + 1/\rho 2)2
< 1,

such that

Q

\biggl( 
\rho 2

4

\biggr) 
= Q

\biggl( 
\alpha y2

4

\biggr) 
= 100x2  - (b - ay2) y2 ,
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where
a := x4\alpha 2  - 40x\alpha + 64 and b := 64x2  - 20x3\alpha .

From \alpha \in (0, 1) and x = 0.772 + 1/0.772, we obtain

b \geq (64 - 20x)x2 > 18x2,

and a is a decreasing function of \rho with negative value for \rho = 21. Hence a < 0 for
\rho \geq 21 and then (using \rho \geq 10)

Q

\biggl( 
\rho 2

4

\biggr) 
\leq 100x2  - by2 \leq (100 - 18y2)x2 < 0.

This establishes (C) for \rho \geq 21.
When \rho = 20, a > 0, so that a > 0 whenever \rho \in [10, 20]. For 10 \leq \rho  - \leq \rho \leq \rho +

and \rho  - \leq 20, it therefore holds that

Q

\biggl( 
\rho 2

4

\biggr) 
\leq H(\rho  - , \rho +) := 100x2  - b - y

2
 - + a+y

4
+ ,

where y\pm := \rho \pm + 1/\rho \pm , \alpha  - := \rho 2 - /y
2
 - , a+ := x4\alpha 2

 -  - 40x\alpha  - + 64 , and b - := (64 - 
20x)x2. Now we compute H(16, 21) \approx  - 2524, H(14, 16) \approx  - 5167, H(12, 14) \approx  - 274,
H(11, 12) \approx  - 1994, and H(10, 11) \approx  - 721, from which it follows that Q(\rho 2/4) \leq 0
for \rho in each interval [16, 21], [14, 16], [12, 14], [11, 12], and [10, 11].

Appendix A. Proof of Observation 1.1. We are required to prove that (1)
holds for aI +DP and aI +PD, where a \in \BbbC , D is diagonal, and P is a permutation
matrix. Without loss of generality, a = 0, and next we observe that (1) holds for DP
if and only if (1) holds for PD; indeed every permutation matrix P is unitary, and
hence (1) holds for DP if and only if (1) holds for P (DP )P \ast = PD.

We now concentrate on the matrix DP . Let U be a permutation matrix that
collects the cycles in P , so that UPU\ast = blockdiag (P1, . . . , Pm), where each Pk is a
cyclic backwards shift, i.e., of the form

Pk =

\left[       
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . . . . .

...
0 0 0 . . . 1
1 0 0 . . . 0

\right]       or Pk = I.

Setting \widetilde D := UDU\ast we obtain that \widetilde D is also diagonal (with the diagonal some
permutation of the diagonal of D), and it follows that there exist square matrices
A1, . . . , Am, such that

UDPU\ast = \widetilde D blockdiag (P1, . . . , Pm) = blockdiag (A1, . . . , Am) =: A.

Since all the blocks Ak are of the form in [3], it follows that (C) holds for all Ak.
Moreover, by [9, Theorem 5.1--2], it holds for all k that W (Ak) \subset W (A). Using again
that every permutation matrix is unitary, we finally have that for every polynomial p,

(37)

\| p(DP )\| = \| blockdiag
\bigl( 
p(A1), . . . , p(Am)

\bigr) 
\| 

= max
k\in \{ 1,...,m\} 

\| p(Ak)\| 

\leq 2 max
k\in \{ 1,...,m\} 

\bigl\{ 
| p(z)| 

\bigm| \bigm| z \in W (Ak)
\bigr\} 

\leq 2 max
z\in W (A)

| p(z)| = 2 max
z\in W (DP )

| p(z)| .
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