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NORM ESTIMATES OF WEIGHTED COMPOSITION OPERATORS

PERTAINING TO THE HILBERT MATRIX

MIKAEL LINDSTRÖM, SANTERI MIIHKINEN, AND NIKLAS WIKMAN

Abstract. Very recently, Božin and Karapetrović [4] solved a conjecture by proving
that the norm of the Hilbert matrix operator H on the Bergman space Ap is equal to

π

sin( 2π
p

)
for 2 < p < 4. In this article we present a partly new and simplified proof of

this result. Moreover, we calculate the exact value of the norm of H defined on the
Korenblum spaces H∞α for 0 < α < 2/3 and an upper bound for the norm on the scale
2/3 ≤ α < 1.

1. Introduction

The Hilbert matrix operator H is one of the central operators in operator theory and
the study of its boundedness, norm and other properties on several analytic function
spaces has been under active investigation in recent years. Magnus [9] was the first one
to study H as an operator on the space l2 of all square-summable complex sequences.
Diamantopoulus and Siskakis [6] considered H acting on the Hardy spaces Hp. They
showed that H : Hp → Hp is bounded for 1 < p < ∞, and obtained an upper bound for
its norm, namely ‖H‖Hp→Hp ≤ π

sin(π
p

) for 2 ≤ p < ∞ and another estimate on the scale

1 < p < 2. In [7], the boundedness of H on the Bergman spaces Ap, 2 < p < ∞, was
shown and the first upper bound for the norm of H was also obtained, that is,

‖H‖Ap→Ap ≤
π

sin(2π
p )

for 4 ≤ p < ∞ and another less precise upper estimate for 2 < p < 4. Later, Dostanić,
Jevtić and Vukotić [8] proved this to be the exact value of the norm on the scale 4 ≤ p <∞
and improved the upper bound in [7] for the exponents 2 < p < 4. They also established
the precise value of the norm of H in the Hardy space case for all 1 < p <∞. In turn, the
boundedness of H defined on the Korenblum spaces H∞α was observed in [2]. The upper
estimate for the norm of H on Ap, 2 < p < 4, was conjectured in [8] to be the same as the
one for the values 4 ≤ p <∞. Recently, Božin and Karapetrović [4] solved the conjecture
in the positive and obtained that

‖H‖Ap→Ap =
π

sin(2π
p )

also for 2 < p < 4. In [4], the problem of determining the norm of H was reduced to
estimates concerning the Beta function. The proof of one their key results rests heavily
on the use of a theorem of Sturm involving the number of zeros of a polynomial; see [10].
The purpose of this article is twofold: First, by avoiding the use of Sturm’s theorem, we
give a partly new and simplified proof of the main result in [4]. Secondly, we establish the
exact value of the norm of H defined on the Korenblum spaces H∞α for 0 < α < 2/3 and
an upper bound for the norm on the scale 2/3 ≤ α < 1. Our proof of the Bergman space
case rests upon a new estimate for the Beta function due to Bhayo and Sándor [3]. We
also give a different proof of case 2 +

√
3 ≤ p < 4 in [4, Lemma 2.6] based on a change of

variables in the Beta function. Regarding the H∞α case, we employ the representation of H
in terms of weighted composition operators and a formula for the norm of these operators
on spaces H∞α .
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2. Preliminaries

Let H(D) be the algebra of analytic functions in the open unit disc D = {z ∈ C : |z| < 1}
of the complex plane C. For those f ∈ H(D), f(z) =

∑∞
k=0 akz

k, for which the sequence( ∞∑
k=0

ak
n+ k + 1

)∞
n=0

converges, the Hilbert matrix operator H can be defined by its action on the Taylor
coefficients of f as follows

H(f)(z) =
∞∑
n=0

( ∞∑
k=0

ak
n+ k + 1

)
zn.

However, it also admits a integral representation in terms of weighted composition oper-
ators Tt

(2.1) H(f)(z) =

∫ 1

0
Tt(f)(z) dt, z ∈ D,

where Tt(f)(z) = ωt(z)f(φt(z)) for 0 < t < 1, ωt(z) = 1
(t−1)z+1 and φt(z) = t

(t−1)z+1 ; see

[6]. The representation (2.1) is employed in this article. We consider H acting on the
Bergman spaces

Ap =

{
f ∈ H(D) : ‖f‖Ap =

(∫
D
|f(z)|p dA(z)

)1/p

<∞
}
,

where 2 < p < ∞ and dA(z) is the normalized Lebesgue area measure on D, and on the
Korenblum spaces

H∞α =

{
f ∈ H(D) : ‖f‖H∞α = sup

z∈D
(1− |z|2)α|f(z)| <∞

}
,

where 0 < α < 1. We also need the Beta function defined as

B(s, t) =

∫ 1

0
xs−1(1− x)t−1 dx,

where s, t ∈ C \ Z satisfy <(t) > 0 and <(s) > 0. It can be checked that

B(s, t) = Γ(s)Γ(t)/Γ(s+ t),

where Γ is the Gamma function. We will also use the well-known equation

Γ(z)Γ(1− z) =
π

sin(πz)
, z ∈ C \ Z.

We refer the reader to [1] for these and other identities regarding the Beta and Gamma
functions.

3. The norm of the Hilbert matrix operator on Ap

In this section, we present a partly shorter proof than the one given in [4] for the
operator norm of H acting on the Bergman spaces Ap, 2 < p < 4. In [4], the proof of the
main result rests upon a new estimate for the Beta function, see [4, Lemma 2.6], and a
part of it is in turn proved by utilizing a classical result of Sturm. We are able to avoid
the result of Sturm and consequently simplify their proof considerably. A crucial tool for
us is an estimate for the Beta function proved by Bhayo and Sándor [3], which we state
and prove next for the convenience of the reader.

Lemma 3.1. Let x > 1, 0 < y < 1. Then

(3.1) B(x, y) <
1

xy
(x+ y − xy).
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Proof. Let us first show that

(3.2) ψ(1 + x)− ψ(x+ y) <
1− y

x+ y − xy
,

where ψ(x) = Γ′(x)
Γ(x) . Write

gx(y) := ψ(1 + x)− ψ(x+ y)− 1− y
x+ y − xy

.

For the second derivative of gx(y) with respect to y notice that

ψ′′(x+ y) = (−1)3
∞∑
k=0

2!

(x+ y + k)3 < 0,

see [1]. Thus for x > 1, and 0 < y < 1 we obtain

g′′x(y) =
2x− 2

(x(1− y) + y)3
− ψ′′(x+ y) > 0.

It follows now that gx is convex as a function of y. By using the equality ψ(1+x)−ψ(x) = 1
x

we conclude that

gx(0) = ψ(1 + x)− ψ(x)− 1

x
= 0 = gx(1).

By convexity of gx inequality (3.2) follows.
Now, we define

hy(x) = log(Γ(1 + x)) + log(Γ(1 + y))− log(Γ(x+ y))− log(x+ y − xy).

Then estimate (3.1) is equivalent to hy(x) < 0. By differentiating hy with respect to x we
get

h′y(x) = gx(y),

which is negative due to inequality (3.2). Thus hy(x) is nonincreasing for x > 1 and since
hy(1) = 0 the result follows. �

Next, we state Lemma 2.5 from [4] with a significantly simplified proof compared to the
one given there. In [4], the proof of Lemma 2.5 is divided into three cases depending on
the size of the parameter p. Two of the cases utilize a classical result of Sturm involving
the number of zeros of a polynomial; see [4, Theorem 2.1]. However, the proof presented
here avoids using the result of Sturm by utilizing Lemma 3.1 and, moreover, it suffices to
consider only two cases, namely 2 < p < 5/2 and 5/2 ≤ p < 4. The proof of the former
case is the same as the one in [4], but it is presented here for the sake of completeness.

Lemma 3.2. Let 2 < p < 4. Then B
(

2
p , 2(p− 2)

)
≤ 1

(p−2)(4−p) .

Proof. (1) Case 2 < p < 5
2 . By using B(x, y) ≤ 1

xy , x, y ∈ (0, 1] and observing that both

parameters in the Beta function belong to the interval (0, 1], we have

B

(
2

p
, 2(p− 2)

)
≤ 1

(p− 2)(4− p)
.

(2) Case 5
2 < p < 4. Now 2(p− 2) > 1 and 2

p < 1. Hence by Lemma 3.1, we have

B

(
2

p
, 2(p− 2)

)
<

1
2
p · 2(p− 2)

(
2

p
+ 2(p− 2)− 2

p
· 2(p− 2)

)
=

1

2(p− 2)
(p2 − 4p+ 5).

The claim follows from the following inequality

1

2
(p2 − 4p+ 5) ≤ 1

4− p
,
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which is equivalent to

(p− 3)2(p− 2) ≥ 0.

�

A crucial estimate for the proof of the main result [4, Theorem 1.1] is Lemma 2.6 in
[4]; see Lemma 3.3 below. Its proof is divided into two parts: (i) 2 +

√
3 ≤ p < 4 and

(ii) 2 < p < 2 +
√

3. We provide a new proof for the case (i). The proof of the case (ii)
is the same as in [4] and therefore omitted. It essentially uses Lemma 3.2 above and it is
briefly commented at the end of the proof.

Lemma 3.3. Let 2 < p < 4 and s ∈ [0, 1]. Then

Fp(s) =

(
4− p

2
+
p− 2

2
s4

)
B

(
2

p
, 1− 2

p

)
−
∫ 1

0
ψp(t) max{s2, t2}p−2dt ≤ 0,

where ψp(t) = t
2
p
−1

(1− t)−
2
p .

Proof. First notice that

Fp(1) =

(
4− p

2
+
p− 2

2

)
B

(
2

p
, 1− 2

p

)
−
∫ 1

0
ψp(t)dt = 0.

The function Fp(s) can be written as

Fp(s) =

(
4− p

2
+
p− 2

2
s4

)
B

(
2

p
, 1− 2

p

)
− s2(p−2)

∫ s

0
ψp(t)dt−

∫ 1

s
ψp(t)t

2(p−2)dt.

By differentiating Fp we get

F ′p(s) = 2(p− 2)s3B

(
2

p
, 1− 2

p

)
− 2(p− 2)s2p−5

∫ s

0
ψp(t)dt− s2(p−2)ψp(s) + s2(p−2)ψp(s)

= 2(p− 2)s2p−5

(
B

(
2

p
, 1− 2

p

)
s8−2p −

∫ s

0
ψp(t)dt

)
.

Now a change of variable yields

B

(
2

p
, 1− 2

p

)
=

∫ 1

0
t
2
p
−1

(1− t)−
2
pdt =

∫ s

0
t
2
p
−1

(s− t)−
2
pdt.

Consequently, it follows that

F ′p(s) = 2(p− 2)s2p−5

[
s8−2p

∫ s

0
t
2
p
−1

(s− t)−
2
pdt−

∫ s

0
t
2
p
−1

(1− t)−
2
pdt

]
= 2(p− 2)s2p−5

[∫ s

0
t
2
p
−1
(
s8−2p(s− t)−

2
p − (1− t)−

2
p

)
dt

]
.

For fixed p ∈ (2, 4) and s ∈ [0, 1) define the function Hp,s(t) = s8−2p(s− t)−
2
p − (1− t)−

2
p

for t ∈ [0, s).
(1) Case 2 +

√
3 ≤ p < 4. Solving Hp,s(t) = 0 we get

s8−2p(s− t)−
2
p = (1− t)−

2
p ⇐⇒ s(4−p)p(1− t) = (s− t).

By denoting x = (4 − p)p and solving the equation above with respect to t we have
t = sx−s

sx−1 . Since sx − 1 < 0 for all s ∈ [0, 1) solutions to Hp,s(t) = 0 exist only if there is
some t0 such that

t0 =
sx − s
sx − 1

≥ 0 ⇐⇒ sx − s ≤ 0

⇐⇒ p2 − 4p+ 1 ≤ 0

⇐⇒ 2−
√

3 ≤ p ≤ 2 +
√

3.
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It also holds that t0 ≤ s as

t0 ≤ s ⇐⇒
sx − s
sx − 1

≤ s ⇐⇒ s < 1.

Because 2 +
√

3 < p < 4, it follows that Hp,s(t) = 0 has no solution in [0, s). Moreover,
limt→sHp,s(t) = +∞ and hence, F ′p(s) ≥ 0. Thus Fp(s) is nondecreasing in [0, 1] and
because Fp(1) = 0 the statement holds.

(2) Case 2 < p < 2+
√

3. The proof of this case essentially uses the estimate Fp(0) ≤ 0,
which follows from Lemma 3.2. See the proof of [4, Lemma 2.6] for details. �

The main result of [4] is the following.

Theorem 3.4 (Theorem 1.1 in [4]). Let 2 < p < 4. Then the norm of the Hilbert matrix
operator H acting on Ap is

‖H‖Ap→Ap =
π

sin(2π/p)
.

The starting point of its proof is the representation of the Hilbert matrix operator in
terms of weighted composition operators; see (2.1). The proof relies on a method based
on Lemma 3.3 and using monotonicity of integral means in a new way yielding the upper
estimate

‖H‖Ap→Ap ≤
π

sin(2π/p)
,

which in combination with the same lower estimate implies Theorem 3.4. We refer the
reader to [4] for the complete proof.

4. The norm of the Hilbert matrix operator on H∞α

In this section, we derive norm estimates for the Hilbert matrix operator acting on H∞α .
Since H is not bounded on H∞α for α = 0 and α ≥ 1, we focus on the scale 0 < α < 1.
Let 0 < α < 1 and z ∈ D. Define

fα(z) =
1

(1− z)α
.

On one hand, we have the estimate

‖fα‖H∞α = sup
z∈D

(1− |z|2)α

|1− z|α
≤ sup

z∈D
(1 + |z|)α = 2α.

On the other hand, for r ∈ (0, 1) it holds that limr→1− |fα(r)|(1−r2)α = 2α and we obtain
‖fα‖H∞α = 2α.

The weighted composition operator Tt applied to a function fα can be written as

Tt(fα)(z) =
((t− 1)z + 1)α−1

(1− t)α
fα(z), z ∈ D,

and furthermore

H(fα)(z) =

(∫ 1

0

((t− 1)z + 1)α−1

(1− t)α
dt

)
fα(z).

By a change of variables t = 1− s we can write H(fα)(z) = ψα(z)fα(z), where

ψα(z) =

∫ 1

0

(1− sz)α−1

sα
ds.

Notice that ψα(z) is defined and continuous on D for 0 < α < 1. Thus we have for all
z ∈ D and 0 < α < 1 that

|ψα(z)| ≤
∫ 1

0

(1− s)α−1

sα
ds =

π

sin(απ)
.
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We will also need the following representation of the norm of a weighted composition
operator uCϕ : H∞α → H∞α :

(4.1) ‖uCϕ‖H∞α →H∞α = sup
z∈D

(
|u(z)|

(
1− |z|2

1− |ϕ(z)|2

)α)
,

where u ∈ H∞ and ϕ is an analytic self-map of the unit disc; see [5]. We are now ready
to give the lower bound for H in the H∞α case.

Theorem 4.1. If H : H∞α → H∞α , then

‖H‖H∞α →H∞α ≥
π

sin(πα)

holds for 0 < α < 1.

Proof. We will use the normalized test function gα(z) = fα(z)
‖fα‖H∞α

. We have

‖H‖H∞α →H∞α ≥ ‖H(gα)‖H∞α = ‖ψαgα‖H∞α = sup
z∈D
|ψα(z)||gα(z)|(1− |z|2)α

≥ sup
0≤r≤1

|ψα(r)||gα(r)|(1− r2)α = sup
0≤r≤1

|ψα(r)|(1 + r)α

‖fα‖H∞α
=

2α|ψα(1)|
‖fα‖H∞α

= |ψα(1)| = π

sin(πα)
,

where we have used the equality ‖fα‖H∞α = 2α. �

Before proceeding to the proof of the upper bound for ‖H‖H∞α →H∞α (Theorem 4.3), we
establish the following lemma.

Lemma 4.2. Let 0 < α < 1. Then

‖Tt‖H∞α →H∞α =

{
tα−1

(1−t)α if 0 < α ≤ 2/3 and 0 < t < 1 or if 2/3 < α < 1 and 3α−2
4α−2 ≤ t < 1

F (x0/(1− t)) if 2/3 < α < 1 and 0 < t < 3α−2
4α−2 .

Proof. Assume first that 0 < α ≤ 1/2 and f ∈ H∞α . Then the estimate |φ′t(z)| ≤ 1−t
t and

the Schwarz-Pick lemma yield

‖Tt(f)‖H∞α = sup
z∈D
|Tt(f)(z)|(1− |z|2)α

= sup
z∈D

1√
t(1− t)

|φ′t(z)|1/2|f(φt(z))|(1− |z|2)α

= sup
z∈D

1√
t(1− t)

|φ′t(z)|1/2−α|φ′t(z)|α|f(φt(z))|(1− |z|2)α

≤ 1√
t(1− t)

(
1− t
t

)1/2−α
sup
z∈D
|f(φt(z))|(1− |z|2)α|φ′t(z)|α

≤ tα−1

(1− t)α
sup
z∈D
|f(φt(z))|(1− |φt(z)|2)α ≤ tα−1

(1− t)α
‖f‖H∞α .

Let 1/2 < α < 1. We apply equation (4.1) to Tt, in which case we have

u(z) = ωt(z) =
1

(t− 1)z + 1
=

1√
t(1− t)

(φ′t(z))
1/2

and ϕ = φt and thus we get

‖Tt‖H∞α →H∞α = sup
z∈D
|1− (1− t)z|2α−1

(
1− |z|2

|1− (1− t)z|2 − t2

)α
.
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Define

F (z) = |1− (1− t)z|2α−1

(
1− |z|2

|1− (1− t)z|2 − t2

)α
and a projection

R(z) = 1− |z − 1|
that rotates a point z ∈ D around the point 1 placing it on the real axis. We have that
|R(z)| ≤ |z| and |1−R(z)| = |1− z| for each z ∈ D, so it follows that

F (z) ≤ |1−R((1− t)z)|2α−1

(
1− |R((1−t)z)

1−t |2

|1−R((1− t)z)|2 − t2

)α
.

Since |R((1− t)z)| ≤ 1− t, we have

sup
z∈D

F (z) ≤ sup
|x|≤1−t

G(x),

where

G(x) = (1− x)2α−1

(
1− | x1−t |

2

(1− x)2 − t2

)α
is a differentiable function in [t − 1, 1 − t) with limx→1−tG(x) = tα−1

(1−t)α . Assuming that

x 6= 1− t, we may write

G(x) = (1− x)2α−1

(
1− t+ x

(1− t)2(1 + t− x)

)α
.

Denoting its continuous extension to [t− 1, 1− t] still by G we have

G(x) = (1− x)2α−1

(
1− t+ x

(1− t)2(1 + t− x)

)α
that is a differentiable function in [t− 1, 1− t] and G(1− t) = tα−1

(1−t)α . We obtain

G′(x) = α(1− x)2α−1

(
1− t+ x

(1− t)2(1 + t− x)2
+

1

(1− t)2(1 + t− x)

)(
1− t+ x

(1− t)2(1 + t− x)

)α−1

− (2α− 1)(1− x)2(α−1)

(
1− t+ x

(1− t)2(1 + t− x)

)α
.

For x ∈ (t− 1, 1− t], we may write

G′(x) =

(1− x)2(α−1)

(
1−t+x

(t−1)2(1+t−x)

)α
((1− 2α)x2 + (4αt− 2t+ 2α)x+ (1− 2α)t2 − 1)

(t− x)2 − 1
.

Since x = t− 1 corresponds to the point z = −1 and F (−1) = G(t− 1) = 0, we may omit
it. The zeros of G in (t− 1, 1− t] are the zeros of a quadratic polynomial

p(x) = (1− 2α)x2 + (4αt− 2t+ 2α)x+ (1− 2α)t2 − 1.

From p(x) = 0, we get

x0 =
α+ 2αt− t−

√
4α2t− 2αt+ α2 − 2α+ 1

2α− 1
,

since the other root of p(x) is located outside the interval (t − 1, 1 − t] and therefore it
can be discarded. Looking at the sign of G′(x) near x0, we observe that G has a global
maximum at x0 > 0 whenever x0 ∈ [t− 1, 1− t]. Let us first confirm that x0 > 0. Now

(α+ 2αt− t)2 = α2 + 4α2t+ 4α2t2 − 2tα− 4αt2 + t2 = α2 + 4α2t− 2tα+ (2α− 1)2t2

> α2 + 4α2t− 2tα+ 1− 2α,
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since 1− 2α < 0. Hence

x0 =
α+ 2αt− t−

√
4α2t− 2αt+ α2 − 2α+ 1

2α− 1
>
α+ 2αt− t−

√
(α+ 2αt− t)2

2α− 1
= 0.

Let us next investigate when x0 ≤ 1− t. Now for 1/2 < α < 1, we have

x0 ≤ 1− t

⇐⇒ α+ 2αt− t−
√

4α2t− 2αt+ α2 − 2α+ 1 ≤ (2α− 1)(1− t)

⇐⇒ (4α− 2)t+ 1− α ≤
√

4α2t− 2αt+ α2 − 2α+ 1

⇐⇒ (8α2 − 8α+ 2)t2 + (7α− 6α2 − 2)t ≤ 0

⇐⇒ 8(α− 1/2)2t ≤ 6α2 − 7α+ 2 = 6(α− 1/2)(α− 2/3)

⇐⇒ t ≤ 3α− 2

4α− 2
.

Hence we have the following cases.
(1) If 1/2 < α ≤ 2/3, then x0 ≤ 1 − t if and only if t ≤ 3α−2

4α−2 < 0. Since 0 < t < 1, it

holds that x0 > 1− t and ‖Tt‖H∞α →H∞α = supz∈D F (z) = limx→1 F (x) = G(1− t) = tα−1

(1−t)α .

(2) If 2/3 < α < 1, then x0 ≤ 1− t if and only if 0 < t ≤ 3α−2
4α−2 . In this case,

‖Tt‖H∞α →H∞α = F (x0/(1− t)) = G(x0).

Otherwise, we have x0 > 1 − t if and only if 3α−2
4α−2 < t < 1 and then ‖Tt‖H∞α →H∞α =

G(1− t) = tα−1

(1−t)α .

Now in combination with the case 0 < α ≤ 1/2, we have the following result.

‖Tt‖H∞α →H∞α =

{
tα−1

(1−t)α if 0 < α ≤ 2/3 and 0 < t < 1 or if 2/3 < α < 1 and 3α−2
4α−2 ≤ t < 1

F (x0/(1− t)) if 2/3 < α < 1 and 0 < t < 3α−2
4α−2 .

�

Theorem 4.3. Let 0 < α ≤ 2/3 and H : H∞α → H∞α be the Hilbert matrix operator. Then

‖H‖H∞α →H∞α =
π

sin(απ)
.

For 2/3 < α < 1, we have the following upper bound

‖H‖H∞α →H∞α ≤
∫ 3α−2

4α−2

0
G(x0) dt+

∫ 1

3α−2
4α−2

tα−1(1− t)−α dt,

where

G(x) = (1− x)2α−1

(
1− | x1−t |

2

(1− x)2 − t2

)α
and

x0 =
α+ 2αt− t−

√
4α2t− 2αt+ α2 − 2α+ 1

2α− 1
.

Proof. Let 0 < α ≤ 2/3. Then by Lemma 4.2 we have for f ∈ H∞α with ‖f‖H∞α = 1 that

‖Hf‖H∞α = sup
z∈D
|
∫ 1

0
Ttf(z) dt(1− |z|2)α| ≤

∫ 1

0
sup
z∈D
|Ttf(z)|(1− |z|2)α dt

≤
∫ 1

0
‖Tt‖H∞α →H∞α dt =

∫ 1

0
tα−1(1− t)−α dt = B(α, 1− α) =

π

sin(απ)
.
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Thus in view of the lower bound (Theorem 4.1) we have established

‖H‖H∞α →H∞α =
π

sin(απ)

for 0 < α ≤ 2/3. In the case 2/3 < α < 1, we obtain the following upper bound:

‖H‖H∞α →H∞α ≤
∫ 1

0
‖Tt‖H∞α →H∞α dt

=

∫ 3α−2
4α−2

0
G(x0) dt+

∫ 1

3α−2
4α−2

tα−1(1− t)−α dt,

where

G(x) = (1− x)2α−1

(
1− | x1−t |

2

(1− x)2 − t2

)α
and

x0 =
α+ 2αt− t−

√
4α2t− 2αt+ α2 − 2α+ 1

2α− 1
are from Lemma 4.2. �
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