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Abstract: Recent advancements in omics technologies have generated a wealth of biological data.
Integrating these data within mathematical models is essential to fully leverage their potential.
Genome-scale metabolic models (GEMs) provide a robust framework for studying complex biological
systems. GEMs have significantly contributed to our understanding of human metabolism, including
the intrinsic relationship between the gut microbiome and the host metabolism. In this review, we
highlight the contributions of GEMs and discuss the critical challenges that must be overcome to
ensure their reproducibility and enhance their prediction accuracy, particularly in the context of
precision medicine. We also explore the role of machine learning in addressing these challenges
within GEMs. The integration of omics data with GEMs has the potential to lead to new insights, and
to advance our understanding of molecular mechanisms in human health and disease.

Keywords: constraint-based modeling; host microbiome; human metabolism; human metabolic
networks; metabolic reconstructions; metabolic modeling; multi-omics

1. Introduction

The integration of omics data such as genomics, transcriptomics, proteomics, and
metabolomics has revolutionized our understanding of biological systems by providing
a holistic view of the complex molecular processes associated with human health [1].
Genome-scale metabolic modeling (GSMM) is a constraint-based mathematical modeling
technique that has been instrumental in the analysis of omics data [2,3]. Genome-scale
metabolic models (GEMs) provide a robust framework that enables the integration of mul-
tiple omics datasets [4,5]. By harnessing the power of GEMs, researchers can delve into the
complexities of biological pathways, enabling a comprehensive understanding of cellular
metabolism and its underlying mechanisms [2,6–9]. Furthermore, incorporating biochemi-
cal and genetic information into GEMs has enabled researchers to understand the interplay
between genes, proteins, and metabolites involved in cellular metabolism. This integrative
approach effectively bridges the gap between genotypes and phenotypes [4,5,10].

GEMs serve as a valuable tool for predicting metabolic capabilities and identifying key
regulatory nodes in biological systems, representing a paradigm shift in omics data analysis.
GSMM has been used to study gut ecosystems, exploring the metabolic interactions between
the host and the microbial communities in the gut [11–14]. Notably, the development of
GEMs for catalogued human gut microbes [15,16] by uncovering their metabolic functions
has been a major recent achievement.

In this review, we explore how GSMM has contributed to our understanding of
human metabolism. Specifically, we focus on two important approaches: (a) tissue-specific
modeling and (b) host-microbiome modeling. We address key challenges associated with
model reconstruction and validation to improve the reproducibility and reliability of
GEM-based predictions. In addition, we emphasize the wide-ranging scope and diverse
applications of GEMs in the field of precision medicine.
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2. Exploring Human Metabolism: The Evolution of Genome-Scale Metabolic Models

Throughout the past three decades, GEMs have undergone continuous evolution,
deepening our understanding of metabolic processes and their implications in various bio-
logical and clinical studies [9,17]. GEMs have been widely used in metabolic engineering,
where they have demonstrated their ability to predict cellular growth under different nutri-
ent conditions [18,19]. Furthermore, they have been applied to design studies, investigating
the essentiality of reactions/genes [20,21] and the relevance of metabolic pathways [22]
and modeling phenotypes by manipulating these pathway(s) [23].

Over the past 15 years, there has been a focused and continuous effort by researchers
to develop and enhance GEMs for human metabolism. Recon 1 was one of the first generic
reconstructions of human metabolism, which aimed to integrate and analyze diverse biolog-
ical datasets, providing a foundation for studying human metabolic pathways [24]. EHMN
(Edinburgh Human Metabolic Network) was developed to capture the intricacies of human
metabolism and facilitate comprehensive analyses of metabolic functions. EHMN served
as a valuable resource for exploring metabolic interactions and pathways in humans [25].
Following that, Recon 2 was built upon Recon 1, leading to an expanded coverage of
human metabolic pathways and thereby offering an enhanced understanding of metabolic
processes in health and disease [26,27]. HMR (Human Metabolic Reaction) encompasses
a comprehensive collection of metabolic reactions, enzymes, and associated genes. It
serves as a valuable resource for studying metabolic networks [6,28]. Recently, Recon 3D, a
three-dimensional reconstruction of human metabolism, was developed, which integrates
spatial information to better represent the complexity of metabolic reactions within cel-
lular compartments. Recon 3D provides a detailed and context-specific view of human
metabolism, enabling deeper insights into cellular function than previously possible [3].
HMR and Recon reconstructions have been extensively utilized to study various diseases,
such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cancer, and im-
munometabolism [6,29–32]. In addition, Robinson et al. developed Human1 [33], a unified
Human-GEM, and a web portal, Metabolic Atlas (https://metabolicatlas.org/ (accessed on
23 July 2015)), by integrating and curating the Recon and HMR model’s lineages. The entire
development process followed a systematic approach. Moreover, Human1 and Metabolic
Atlas were demonstrated to be valuable tools in identifying metabolic vulnerabilities, for
instance, in acute myeloid leukemia; predicting essential genes for specific metabolic func-
tions; and estimating metabolic fluxes and growth rates. These advancements enhance the
capacity of GEMs to model metabolic pathways associated with health and disease.

Taken together, genome-scale metabolic reconstructions have contributed to our un-
derstanding of metabolism, providing a foundation for studying metabolic pathways,
predicting regulations, and exploring the impact of genetic variations and environmental
factors on human health.

3. Integrating Omics Data into Genome-Scale Metabolic Models: Overcoming
Challenges and Shaping Perspectives

Omics data have been extensively used to deepen our understanding of various
biological systems, including cells, tissues, and organs. By incorporating individual- or
condition-specific omics datasets, researchers can develop models that accurately represent
the metabolic characteristics of an individual at a particular condition. This approach
allows for a more precise investigation of metabolic pathways and therefore provides a
foundation for precision medicine and the selection of optimal treatment strategies [34,35].
Furthermore, overlaying omics data with the metabolic networks has enabled researchers to
infer metabolic regulations and identify patterns associated with metabolic states [7,8,28,36].

The integration of omics data poses several challenges, and addressing these challenges
requires continuous advancements in data acquisition, standardization, computational
methodologies, and model validation techniques to enhance the accuracy and applicability
of integrated models in various biological contexts.

https://metabolicatlas.org/
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A vast amount of data makes their integration and harmonization a daunting task.
Diverse data types, formats, and measurement scales require meticulous effort with respect
to data integration and standardization. The heterogeneity of data sources, i.e., datasets
generated from different studies, experiments, or platforms, introduces variations in the
data. Managing these technical variations is crucial to ensure the consistency of the results.
Moreover, quality control measures such as outlier removal, artifact correction, and noise
filtering are undertaken to improve data quality [1,37–39]. Dealing with the missing
values is a critical aspect of omics data that can undermine the accuracy and reliability
of the outcomes, if not properly adjusted for. To mitigate this issue, imputation methods
are commonly employed to estimate missing values and minimize the impact of data
sparsity [40]. Lastly, normalization plays an important role in standardizing the scale and
range of omics data across different samples or conditions [41,42]. The normalization of
omics data involves the utilization of various tools, with each suited to specific omics
data types and analytical requirements. Central tendency-based normalization, such as
mean and median, is a simple yet effective method employed for normalizing proteomics
and metabolomics data. It rescales the intensity values of individual samples to align
with the mean or median intensity across all samples. Quantile normalization [43] is a
widely used technique for normalizing gene expression data derived from microarrays.
By aligning the empirical distributions of expression values across samples, it ensures
comparability and robustness. For high-throughput genomic data, including microarrays
or DNA methylation arrays, ComBat [44] is a specialized tool designed to address batch
effects. By employing an empirical Bayes framework, ComBat effectively adjusts for batch-
related variations, leading to more reliable results. ComBat-seq [45] is an advanced method
that utilizes a negative binomial regression model to address batch effects in RNA-seq
studies. RUVSeq (remove unwanted variation in RNA-seq) is a valuable tool dedicated to
eliminating the unwanted sources of variations in RNA-seq data, such as batch effects or
confounding factors [46]. Leveraging a factor analysis-based approach, RUVSeq estimates
and removes these sources of variation, enhancing the accuracy of downstream analyses.
Limma and Limma-Voom are versatile tools that are extensively used for normalizing gene
expression microarray data and RNA-seq data, respectively. These tools utilize linear
modeling and empirical Bayes methods to effectively handle technical variations and
batch effects, ensuring robust and accurate analysis. DESeq2 [47] is a widely adopted
tool that is specifically designed for normalizing RNA-seq data. By utilizing a negative
binomial distribution model, DESeq2 effectively accounts for sequencing depth and sample-
specific biases, enabling reliable differential expression analysis. In addition, edgeR [48]
is another popular tool employed for RNA-seq data normalization. It utilizes a robust
empirical Bayes approach to estimate normalization factors, considering library size and
gene-specific biases. Next-generation sequencing (NGS) data can be normalized using
multiple methods such as TMM (trimmed mean of M values), RPKM (reads per kilobase per
million mapped reads), and CPM (counts per million), utilizing tools such as DESeq2, edgeR,
and limma. Furthermore, NOMIS [49], a normalization method that is specifically developed
for metabolomics data, employs the optimal selection of multiple internal standards to
ensure accurate and reliable normalization. A thorough description of normalization
methods applied to omics data is discussed elsewhere [41,50].

Furthermore, omics data may not capture the entire metabolic network or pathway,
leading to incomplete coverage of the GEMs. Missing or unmeasured components can
limit the model’s accuracy and predictive capabilities, particularly in scenarios where these
components play critical roles.

Integrating omics data into GSMMs involves complex mathematical and computa-
tional algorithms. The process requires sophisticated tools and expertise to handle large
datasets, perform data preprocessing, and apply appropriate integration methods, which
can be computationally demanding.

Several standalone software suites, such as COBRA (constraint-based reconstruction
and analysis) [51–53], Microbiome Modeling Toolbox [54], FastMM (a toolbox for personalized
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constraint-based metabolic modeling) [55], rBioNet [56], and RAVEN (reconstruction, analy-
sis, and visualization of metabolic networks) [57,58], offer comprehensive functionalities for
metabolic reconstructions, modeling, and the integration of omics data. A comprehensive
list of the resources used for human metabolic pathway reconstructions is given in (Table 1).

Table 1. Resources for microbial and human metabolic pathway reconstructions.

Databases or Repositories Description References

BiGG database A publicly accessible repository for benchmark GEMs with open access. [59]

Virtual Metabolic Human
(VMH)

A freely accessible database for human and gut microbial metabolic
reconstructions (GEMs) with open access. [60]

ModelSEED A web-based platform for metabolic modeling and analysis. [61]

Human Metabolic Atlas
(HMA) An open access web-based platform for studying human metabolism. [33,62]

HumanCyc A curated database of experimentally validated metabolic pathways for
studying human metabolism. [63]

KEGG A comprehensive resource comprising databases of large-scale molecular
datasets and detailed pathway information. [64,65]

LIPID MAPS A database providing information on lipid structures, pathways, and
lipid-related genes; enzymes; and metabolites. [66]

Human Metabolome Database
(HMDB)

A comprehensive resource that provides information on the chemical
composition, biological roles, and disease associations of metabolites

found in the human body.
[67]

BRENDA An enzyme- and ligand-focused information retrieval system. [68]

REACTOME An open access database for biological pathways. [69]

UniProt An open access database for curated protein information. [70]

Human Protein Atlas (HPA) A comprehensive resource providing information on the expression and
localization of proteins in human tissues and cells. [71]

ProteomicsDB A comprehensive resource for exploring and analyzing protein
expression data from a variety of organisms and tissues. [72]

Entrez gene Gene-centered information, including gene sequences, annotations,
functional data, and genetic variations. [73]

Gene Expression Omnibus
(GEO)

A public repository that provides access to a vast collection of gene
expression data from various experiments and studies. [74]

Array Express (AE) A public database of functional genomics experiments and gene
expression profiles. [75]

European Genome-phenome
Archive (EGA)

A secure and controlled-access database for hosting and sharing human
genetic and phenotypic data. [76]

Genotype-Tissue Expression
(GTEx)

A catalog of genetic variants and their influence on gene expression
across multiple human tissues. [77]

Stockholm-Tartu
Atherosclerosis Reverse

Networks Engineering Task
(STARNET)

A computational method for reconstructing cell lineage trees from
single-cell transcriptomic data. [78]

BioModels A collection of biological models that encompasses various organisms
and biological processes. [79]



Metabolites 2023, 13, 855 5 of 19

4. Modeling Tissue-Specific Interactions: Integrating Omics Data for Contextualization

Tissue-specific GEMs have emerged as powerful tools for investigating the complex
metabolic processes that occur within specific cell or tissue types [6,8,80]. These models are
reconstructed by integrating various types of omics data, including gene, transcript, protein,
and metabolite data, allowing for a more nuanced and context-specific representation of
the metabolic networks within a specific cell type. To leverage expression data, several
algorithms have been developed. GIMME (gene inactivity moderated by metabolism
and expression) utilizes gene expression or transcriptomics data to predict active reac-
tions in a GEM [81,82], aiming to identify a consistent set of metabolic reactions that are
active under the given conditions. This approach provides insights into the metabolic
activity of specific cell-types. Another notable algorithm, iMAT (integrative metabolic
analysis tool), integrates gene expression data to identify active metabolic reactions [83].
By combining transcriptomic data with GEMs, it formulates an optimization problem
to determine the set of reactions that is likely to be active, enabling the identification of
condition-specific metabolic activity and offering a valuable framework for understanding
tissue-specific metabolism. The MADE (metabolic adjustment by differential expression)
algorithm leverages gene expression data to predict metabolic adaptations in response to
different conditions [84]. By considering changes in gene expression levels and utilizing
a network-based approach, MADE identifies reactions that are differentially regulated
between conditions, shedding light on how the metabolic network adjusts its activity in
response to cellular or environmental changes. The E-flux algorithm incorporates gene
expression data to estimate the metabolic flux distribution within a tissue-specific GEM [85].
By combining gene expression profiles with flux balance analysis (FBA), E-flux estimates
the distribution of metabolic fluxes and predicts the activity of specific reactions, offering a
valuable tool for understanding the flow of metabolites through metabolic pathways in
specific tissues. The tINIT (transcriptional integration of tissue-specific GEMs) algorithm
integrates gene expression data with a GEM to predict active metabolic reactions [80,86].
By considering gene expression levels and regulatory interactions, tINIT estimates the tran-
scriptional activity of metabolic genes and identifies active reactions within the metabolic
network, providing a deeper understanding of tissue-specific metabolic activity by in-
corporating transcriptional regulation. The METRADE (metabolic and transcriptomics
adaptation estimator) framework offers a comprehensive approach for integrating gene and
protein expression data, allowing the combination of both types of omics data and enabling
a more holistic understanding of biological processes [87]. Similarly, the IOMA (integrative
omics-metabolic analysis) platform provides an opportunity to integrate proteomic and
metabolomic data [88]. Other algorithms include FASTCORE [89], FASTCORMICS [90],
mCADRE [91], PRIME [92], RegrEX [93], and CORDA [94], and a detail description of these
methods, including their implementation, characteristics, and applications, is reviewed
elsewhere [4,95].

Automated methodologies have been utilized to develop tissue- and cell-specific
models by combining human metabolic reconstructions, primarily from HMR and Recon
lineages, along with omics data [80,91]. Semi-automated techniques for model reconstruc-
tions are included in software suites such as COBRA [51–53] and RAVEN [57,58], which
offer advantages in terms of speed and throughput, enabling the construction of large-
scale models within a reasonable time frame. However, it is important to note that the
speed and throughput may vary depending on the specific methodologies employed and
the complexity of the model being constructed. While semi-automated methods provide
valuable efficiencies, they may also have some limitations. These include a reliance on
manual curation and expert knowledge, which can introduce subjectivity and potential
biases into the model development process [2,96]. Additionally, the need for manual inter-
vention and decision making during the model’s construction phase may introduce human
error. To facilitate the automated reconstruction of GEMs, web-servers like KBase [97] and
ModelSEED [61] have been designed to incorporate large datasets. However, the transition
from semi-automated to fully automated approaches face certain barriers. One significant
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barrier is the requirement for high-quality and comprehensive data, as well as accurate and
reliable algorithms, to automate the model generation process effectively. Furthermore, the
dynamic and context-specific nature of biological systems poses challenges in capturing
the full complexity of metabolic networks in a fully automated manner. Overcoming these
barriers requires refining computational techniques to handle large-scale data integration
and model construction, ensuring the accuracy and reliability of automated approaches.

Notable examples of tissue-specific models include liver GEMs that are specifically
tailored to mimic the metabolism of the human liver [6,8,98,99]. In a recent study, the GEMs
of the human liver have been developed to examine patients with NAFLD at different
stages of fibrosis [8]. The study revealed metabolic signatures related to vitamins (A and E),
glycosphingolipids, and complex glycosaminoglycans in advanced fibrosis. Furthermore,
the models identified metabolic patterns that are associated with three gene variants
(PNPLA3, TM6SF2, and HSD17B13) linked to NAFLD, providing insights into metabolic
dysregulation in the liver and its contribution towards NAFLD progression.

To unravel the contributions of various brain cells in neurodegenerative diseases,
researchers have employed the brain-specific GEMs of neurons, astrocytes, and microglia,
along with multi-omics data [100,101]. These models successfully replicate the metabolic
interactions between these cell types in both healthy and pathological conditions. More-
over, these cell-type-specific models demonstrated the potential to reproduce observed
physiological alterations, with simulations exhibiting strong agreement with experimental
studies [100–104].

Adipocyte-GEM has been instrumental in studying the metabolic processes in adipocytes,
which are the cells primarily responsible for storing and releasing energy as fat [28]. By
integrating transcriptome and fluxome data with the adipocyte-GEM, the authors discov-
ered specific metabolic alterations in obese subjects, including increased metabolic activity
and decreased mitochondrial metabolism. Myocyte-GEM [29] was used to map transcrip-
tional changes in T2D, uncovering significant transcriptional regulation related to pyruvate
oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism. In
another study, Zhao et al. reconstructed a comprehensive metabolic network specifically
tailored to the human heart by incorporating transcriptome and proteome data [105]. By
applying this heart-specific metabolic network, the authors identified novel biomarkers for
cardiovascular disease (CVD) and predicted potential drug targets for different CVD sub-
types. The findings from the study underscored the relevance of a heart-specific metabolic
network in accurately representing the dynamic interplay between environmental factors
and associated metabolic processes.

Furthermore, by incorporating gene expression data and lipidomic experiments into
HMR2, cell-specific GEMs were developed to study the activation and differentiation of
CD4+ T cell subsets. The study revealed specific metabolic changes during CD4+ T cell
activation and differentiation. Importantly, the significance of ceramide and glycosph-
ingolipid biosynthesis pathways in Th17 cell differentiation was highlighted. Moreover,
model predictions were validated using gene knockdown experiments, demonstrating the
role of serine palmitoyltransferase (SPT) in promoting the production of proinflammatory
cytokines by Th17 cells [7].

In addition, a comprehensive metabolic reconstruction of human small intestinal ep-
ithelial cells (sIECs) was assembled and curated [106]. The sIEC reconstructions incorporate
both experimentally validated and putatively identified transporters [3,106,107]. These
models have been used in studying the physiological functions of the small intestine and
in gaining insights into their role in tissue metabolism.

In a study conducted by Gustafsson et al., they introduced a novel approach for
generating cell-type models by integrating single-cell RNA sequencing (scRNA-seq) with
GEMs. By clustering single-cell RNA profiles, the authors demonstrated the effectiveness
of combining scRNA-seq and GEMs in advancing the understanding of human metabolism.
This method shows promising potential, particularly as single-cell datasets and GEMs
become increasingly accessible [108]. A schematic workflow depicting the process of
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generating context-specific GEMs via the integration of multi-omics data is shown in
Figure 1.
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Figure 1. A schematic workflow for context-specific genome-scale metabolic reconstructions using
multi-omics data. (A) Human and microbial metabolic reconstructions and pathway databases
serve as a scaffold for integrating omics data, with the stoichiometric matrix (S) representing the
mathematical representation of the metabolic network and capturing the stoichiometric coefficients
of metabolites (M) in each reaction (R). (B) Various types of multi-omics and/or meta-omics datasets
are employed to contextualize human and microbial metabolic reconstructions. (C) Cell-, tissue-, and
organ-specific-GEMs are developed using metabolic reconstructions and omics datasets. (D) These
condition-specific GEMs enable the predictions of flux phenotypes, the regulation of metabolic
pathways, the identification of reporter metabolites and pathways, and the study of microbe-microbe
interactions and explore the intricate relationship among diet, host, and microbiota in healthy and
disease states.

Recently, multi-tissue modeling frameworks were developed to study the interactions
between cell and tissue-specific models [109,110]. Bordbar et al. have developed a multi-
tissue type genome-scale metabolic network for adipocytes, hepatocytes, and myocytes,
allowing for the study of intercellular interactions [110]. By integrating omics data, differen-
tial metabolic activity between obese and T2D obese gastric bypass patients was examined
in a whole-body context. In another study, Foguet et al. developed personalized organ-
specific (multiple tissues) metabolic flux models for a large cohort; these models identified
associations between the personalized flux profiles and concentrations of metabolites in
the blood via a fluxome-wide association study (FWAS) [111]. Several metabolic fluxes
were found to be associated with the risk of developing coronary artery disease (CAD),
unravelling a mechanism. Additionally, incorporating omics data into GEM networks
enables the identification of functional modules, gene regulatory networks, and metabolic
interactions, contributing to a better understanding of complex metabolic pathways within
cells [36,80,112]. A list of cell- and tissue-specific GEMs developed by the integration of
omics datasets can be found in Table 2.
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Table 2. Cell or tissue-specific GEMs developed using omics data. Abbreviations G, T, P, M, and F de-
note gene expression (microarray), transcriptomics (NGS), proteomics, metabolomics, and fluxomics,
data, respectively. CVD, NAFLD, AD, T2D, T1D, MTB, IEMs, PBMCs, and HEK denote cardiovascular
disease, non-alcoholic fatty liver disease, Alzheimer’s disease, type 2 diabetes, type 1 diabetes, and
Mycobacterium tuberculosis, inborn errors of metabolism, peripheral blood mononuclear cells, and
human embryonic kidney, respectively.

Tissue or Cell-Type
Human Metabolic

Reconstructions Used for the
Contextualization

Omics or Diet Data
Type(s) Phenotypes Modeled References

Liver

HepatoNet1 G Liver metabolism [113]

HMR2
(iHepatocytes2322) T, P, and M NAFLD [6]

HMR2 T and M NAFLD [8]

Recon1 T, M, and F NAFLD [98]

Adipocytes HMR1
(iAdipocytes1809) T, P, and F Adipocyte metabolism [28]

Skeletal muscles HMR2
(iMyocyte2419) T and P T2D [29]

— T and P CVD [105]

Heart Recon1
(CardioNet) G Cardiac metabolism [114]

Brain

Astrocyte metabolic network T Ischemic and normal
conditions [115]

Recon3D T and M AD [103,104]

Recon1
(iNL403) G and P AD [101]

Kidney — T and P Focal segmental
glomerulosclerosis [116]

Kidney Recon2
(HEK cell culture) — Metabolism of HEK

cells [117]

Alveolar macrophage Recon1
(iAB-AMØ-1410) G Host-pathogen

interactions in MTB [118]

CD4+ T-cells HMR2 G, T, and M CD4+ T-cells activation
and differentiation [7]

PBMCs HMR2 G, T, and M T1D [119]

Human small intestinal
epithelial cells

Recon1
(hs_sIEC611)

American diet and a
balanced diet

Intestinal metabolism
and IEMs [106]

Whole-body metabolic
reconstructions

Recon3D
(WBM) T, P, and M

Human metabolism
and host-microbiome

co-metabolism
[120]

5. Modeling the Interactions between Gut Microbial Communities and Host Metabolism

The emergence of high-throughput “meta”-omics technologies has significantly im-
proved our understanding of the gut microbiome and its significance in human health
and disease. Nevertheless, the vast amount of data generated by gut microbiome research
demands the development of innovative computational tools and mathematical models,
while approaches such as 16S rRNA amplicon sequencing and whole-genome shotgun
metagenomics sequencing (WGS) have been utilized for microbiome profiling [121]; these
genome-centric methods alone cannot offer mechanistic insights into individual taxa, their
interactions with other gut flora, or their influence on host metabolism [13,122,123].
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GSMM has emerged as a valuable approach for investigating the metabolic interac-
tions between microbial communities and their host in gut ecosystems [12,15,112,124–128].
Recent advancements have led to the development of GEMs that are specifically tailored
to catalogued human gut microbes, leveraging their metabolic functions [129,130]. One
notable example is the AGORA (assembly of gut organisms through reconstruction and
Analysis) project, which successfully conducted semi-automatic genome-scale metabolic
reconstructions of 773 human gut bacteria, encompassing 205 genera and 605 species [15].
Recently, AGORA2, an expanded resource of human gut microbial metabolic reconstruc-
tions incorporating 7302 strains, was developed [16]. AGORA2 facilitated personalized
modeling by predicting diverse drug conversion potential in the gut microbiomes of pa-
tients with colorectal cancer vs. controls. It outperformed other resources by predicting
microbial drug transformations and enabling the personalized modeling of gut micro-
biomes in colorectal cancer patients. By using the AGORA framework [15,16], metabolic
interactions among microbial species were modeled by considering their metabolic capabil-
ities and nutrient availability. AGORA reconstructions are publicly accessible via the VMH
(Virtual Metabolic Human) database [60].

In addition, BiGG models [59] and the Metabolic Atlas [33,62] serve as open-access
knowledge bases for genome-scale metabolic reconstructions. To facilitate the automated
reconstruction of microbial GEMs, web-servers like KBase [97] and ModelSEED [61] inte-
grate genome sequences and metagenomics datasets. Other tools, including COMET [131],
BacArena [132], dOptCom [133], MatNet [134], DyMMM [135], MCM [136], and CASINO [126],
have been developed to investigate the interplay between diets, microbiomes, and hosts.
CASINO, for instance, successfully predicted interactions along the diet-microbiota-host
axis in obesity and overweight individuals [126]. A comprehensive review discussing the
implementation, characteristics, and applications of these methods can be found in [127].

Of note, the development of personalized microbiota models tailored to individual
subjects is an area of recent interest. Leveraging metagenomics, meta-transcriptomics, meta-
proteomics, and metabolomics data, estimating the pathway activities within the gut be-
comes possible, offering an approximation of the metabolic functionality specific to the gut
microbes under defined conditions [137,138]. Personalized microbiota models have already
demonstrated their ability to investigate secondary bile acid (BA) metabolism facilitated by
human gut microbiome [128,139]. A recent study has uncovered changes in systemic BAs
and microbial secondary BA pathways in infants and children who later seroconverted to
multiple islet autoantibodies (i.e., being at high risk for type 1 diabetes, T1D). These find-
ings suggest a disrupted BA metabolism that could potentially contribute to the risk and
development of T1D [128]. A description of GSMM of gut microbiome including their imple-
mentation, applications, and tools are reviewed elsewhere [11–13,122,124,125,127,140,141].

6. Towards Whole-Body Metabolic Reconstruction: Bridging Precision Medicine and
Systems Biology

The integration of high-throughput omics data with GEMs enables a deeper under-
standing of the molecular mechanisms underlying disease and facilitates the development
of personalized treatment strategies. By constructing patient-specific metabolic models
based on individual genomic, proteomic, and transcriptomic data, GEMs can predict
metabolic alterations that are associated with specific diseases and identify potential thera-
peutic targets. In a study by Lewis et al. [142], personalized GEMs were developed with the
aim to understand redox metabolism in cancer patients with different types of tumors. The
study identified that radiation-resistant tumors produce elevated levels of reduced redox
cofactors. This intriguing phenomenon suggests a potential link between redox metabolism
and the ability of tumors to withstand radiation treatment. Interestingly, these models
have also unveiled the presence of redox-metabolic heterogeneity among tumors that share
similar clinical phenotypes. The insights provided by the personalized GEMs pave the way
for more targeted approaches to cancer treatment, offering the potential for personalized
interventions that consider the unique metabolic characteristics of each patient’s tumor.
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In another study, Turanli et al. [143] developed prostate-cancer-specific GEMs to explore
cancer metabolism and identify potential therapeutic agents for effective treatment. By
integrating gene expression data and a database of over 1000 drugs, the authors have
predicted drug-gene interactions and identified key reactions with altered fluxes in prostate
cancer. By using in silico cell viability assays, they identified potential repurposed drugs for
prostate cancer treatment. Furthermore, in vitro cell assays confirmed the inhibitory effect
of ifenprodil on prostate cancer cells. Agren et al. [86] employed immunohistochemistry
to evaluate the presence or absence of proteins encoded by genes in 27 hepatocellular
carcinoma (HCC) patients, leveraging this information, along with the HMR 2.0 database
and a task-driven model reconstruction algorithm (tINIT), to develop personalized GEMs
for six HCC patients based on proteomics data. These personalized GEMs served as a
foundation for identifying potential anticancer drugs using the concept of antimetabolites.
To assess the toxicity of each antimetabolite, the authors examined the in silico functionality
of 83 healthy cell-type-specific GEMs. The study predicted several antimetabolites that
could effectively inhibit tumor growth in all HCC patients.

A personalized whole-body metabolic (WBM) reconstruction serves as a powerful tool
that provides a comprehensive view of an individual’s metabolic profile by considering
the intricate relationship between different biological systems. A WBM reconstruction
enables a deeper understanding of how metabolism is influenced by factors like diet,
lifestyle, and gut microbial composition; it facilitates the investigation of individual-specific
responses to dietary interventions, drug treatments, and disease conditions [120]. In a
groundbreaking study, Thiele et al. introduced novel WBM network reconstructions for
males and females [120]. These reconstructions encompassed 26 organs, 6 blood cell
types, and over 80,000 biochemical reactions, offering a comprehensive representation of
whole-body organ-resolved metabolism. Notably, the WBM models successfully replicated
inter-organ metabolic cycles and the patterns of energy utilization. When personalized
with physiological data, they demonstrated superior predictive performance compared
to existing models, particularly in estimating basal metabolic rates. Furthermore, the
integration of microbiome data into these models allowed for the exploration of host-
microbiome co-metabolism.

In summary, GEMs serve as valuable tools in precision medicine, providing a multi-
faceted approach to understanding disease mechanisms, facilitating biomarker discovery,
and guiding personalized treatment strategies that are tailored to specific patient groups.

7. Enhancing the Reproducibility of Genome-Scale Metabolic Models by Addressing
Key Challenges

GEMs have certain limitations that need to be considered. In the context of human
metabolism, GEMs face the challenge of incomplete knowledge about metabolic pathways
and regulatory mechanisms. GEMs rely on the available genomic and biochemical informa-
tion, which may result in gaps in the model, leading to an incomplete representation of
metabolic pathways [2,26]. When it comes to microbiome modeling, a significant limitation
lies in the functional characterization of the microbial species (taxa) within the gut ecosys-
tem. Our knowledge regarding the metabolic capabilities of some individual microbes
in the microbiome is incomplete, which hinders the reliability of GEMs in capturing the
intricacies of microbiomes and their metabolic functions [14,127,140]. By incorporating
newly available and well-annotated datasets into the existing GEMs, we can effectively
address the challenges associated with the completeness of the model. Furthermore, the
incorporation of multi-omics data not only facilitates the refinement and evaluation of
these models but also enhances their validation, thereby increasing our confidence in the
predictions. An iterative process of feedback between model predictions and experimental
validation plays a crucial role in identifying and rectifying any discrepancies, enabling the
continuous improvement and evolution of GEMs. This iterative process of model refine-
ment serves as a driving force for the advancement of the models, ensuring their ability to
represent complex biological systems [2]. MEMOTE (metabolic model testing) is a valu-
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able framework designed to standardize and streamline the testing of GEMs and thereby
enhance their reproducibility and credibility [144]. MEMOTE provides comprehensive
test metrics to assess various aspects of model performance, including stoichiometry, ther-
modynamics, and network connectivity. By applying MEMOTE, researchers can compare
different models and ensure the accuracy and robustness of their metabolic models.

Another limitation is the static nature of GEMs since they primarily represent steady-
state conditions and may not fully capture the dynamic and temporal changes in cellular
metabolism. This means that they might not accurately model changes in metabolite
concentrations and reaction rates over time [10]. To overcome this limitation, dynamic
modeling approaches, such as dynamic flux balance analysis (dFBA) [145] or kinetic mod-
eling, can be employed to capture the temporal behavior and regulatory mechanisms of
metabolic networks [146–148].

Estimating parameter values in GEMs is subject to uncertainty [149]; the absence
of crucial information, such as metabolite concentrations and enzyme kinetics combined
with the high degrees of freedom in GEMs, presents challenges in effectively constraining
these models. However, researchers have employed a range of parameter estimation and
sensitivity analysis techniques to address these limitations and enhance the reliability of
GEMs [149–153]. Notably, the GECKO method has been developed to construct GEMs
with enzymatic constraints by incorporating kinetic and omics data [154]. This is achieved
by expanding the stoichiometric matrix of the GEM to include additional information
representing enzymes and their usage in metabolic reactions. Enzyme kinetics, represented
by pseudo stoichiometric coefficients in the matrix, is used to model the Kcat values. By
constraining protein abundance in this manner, GECKO effectively reduces flux variability
and enhances the accuracy of predictions.

A common limitation of GEMs is their lack of tissue and cell-type specificity. When
generic metabolic networks are reconstructed to represent specific tissues, they may not
fully capture the unique metabolic characteristics of each tissue or cell-type. To address this
issue and improve the contextualization of GEMs for specific conditions, the integration
of multiple omics datasets becomes crucial. While algorithms have been developed to
generate tissue-specific models, most rely on a single omics dataset that may not provide
a comprehensive representation of cell/tissue metabolism. Therefore, there is a need for
new tools and methods that effectively integrate multi-omics data to create more accurate
models. Recently, a promising approach using scRNA-seq data was introduced, which
provided insights into the heterogeneity and interactions within a specific cell type [108].

To ensure the biological relevance of GEMs, it is important to validate their predictions
by comparing them against experimental data and existing knowledge. By conducting
targeted experiments, researchers can assess the accuracy and reliability of the model’s
predictions and gain further insights into the underlying biological processes. The exper-
imental validation of GSMMs involves various techniques, such as in vitro assays, cell
culture experiments, and animal studies. These experiments aim to measure and compare
metabolic fluxes, metabolite concentrations, enzyme activities, and other relevant parame-
ters predicted by the model against experimental observations. Using these validations,
researchers can evaluate the model’s ability to capture the complex dynamics of cellular
metabolism and assess its predictive power. Furthermore, the experimental validation of
GSMMs also involves testing specific hypotheses generated by the model. Researchers
can design experiments to manipulate specific genes, enzymes, or metabolites within
the metabolic network to confirm the model’s predictions and understand the functional
consequences of these perturbations.

8. Leveraging Machine Learning for Genome-Scale Metabolic Modeling: An
Advancing Solution to Address the Key Challenges

Machine learning (ML) techniques have demonstrated their ability to identify metabolic
pathways from chemical compounds; various ML methods have also been employed for
metabolic pathway prediction, analysis, and modeling [155–159]. For instance, Li et al.
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developed the mummichog framework, which enables the direct prediction of pathway
activity using spectral features from metabolomics data [160]. Another tool, Lilikoi, devel-
oped by AlAkwaa et al., specializes in personalized pathway-based classification modeling
using metabolomics data [157]. Unlike conventional pathway tools, Lilikoi incorporates
metabolomic profiles to generate personalized pathway profiles and identify pathways
significantly associated with specific disease phenotypes.

There is a growing interest in combining ML techniques with GSMM [8,155,156,158,161,162].
ML approaches can refine input constraints for GEMs and compare the results from simu-
lations using experimental data [163,164]. ML methods, including linear regression (LR),
decision trees, and naïve Bayes, have been used for gap-filling in draft GEMs [165,166].
Moreover, it can complement constraint-based modeling methods like FBA by incorporat-
ing additional constraints derived from omics data, such as gene expression profiles, protein
abundances, and metabolite concentrations. In a recent study by Zelezniak et al. [167], the
integration of ML and metabolic control analysis (MCA) was instrumental in mapping
regulatory patterns and predicting cell metabolomes. The study unveiled global enzymatic
changes, leading to extensive shifts in metabolic control across different sets of enzymes.

Furthermore, GSMM and ML methods have been applied to determine metabolite
secretion, flux quantification, protein turnover rate estimation, gene essentiality, metabolic
gene prediction, and the assessment of a medication effect [155,156,162,163]. ML coupled
with prospective GSMM has been instrumental in investigating antibiotic efficacy, sensitiv-
ity, and lethality mechanisms [168]. Guo et al. developed DeepMetabolism, a knowledge-
based deep learning (DL) system that predicts cellular phenotypes from transcriptomics
data using a combination of unsupervised and supervised approaches [169]. The frame-
work incorporates an autoencoder with biologically guided connections and leverages FBA
to evaluate the connectivity between proteomic and phenomic layers. The methodology
and applications of ML for the integration of omics data into constraint-based metabolic
modelling have been reviewed in detail elsewhere [159,161,170].

To summarize, ML techniques together with GSMM can unravel the complexity of
biological data. ML enables the consolidation of large omics datasets, extracting key
features that are linked to the desired outcomes. In contrast, GSMM offers a mechanistic
comprehension, generating testable hypotheses regarding the specific metabolic processes
taking place in cells, tissues, organs, or microbial communities via the incorporation of
omics data. The integration of ML and GSMM holds immense promise in achieving a
comprehensive understanding of human metabolism in healthy and diseased states.

9. Conclusions and Future Perspectives

Today, the field of GSMM has witnessed widespread application across various do-
mains, owing to the abundance of biological data, advancements in automatic reconstruc-
tion tools, and the introduction of novel mathematical modeling techniques. As GEMs
continue to evolve, they will encompass a broader range of biological pathways and gene-
protein-reaction (GPR) associations. To further enhance their capabilities, incorporating
additional biochemical information into GEMs becomes necessary, i.e., going beyond
metabolism. This includes aspects such as protein allocation, cellular macromolecular com-
position, and detailed structural information about the proteins. Notably, certain molecular
processes such as enzyme-substrate interactions, protein-protein complex structures, and
post-translational modifications require careful consideration.

The integration of omics data into GEMs has revolutionized our understanding of
biological systems. However, there are still challenges that need to be addressed to improve
the reliability and reproducibility of GEM-based predictions. Efforts should be directed
towards standardizing and harmonizing omics data, developing automated pipelines
and tools for data integration and normalization, and incorporating ML algorithms to
enhance accuracy and robustness. ML algorithms can play a crucial role in automating
the reconstruction of GEMs by leveraging omics data and existing metabolic network
reconstructions. Furthermore, they can be utilized to validate and refine GEMs using
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experimental data, ensuring an accurate representation of metabolic characteristics. ML
algorithms can enable the integration of diverse omics data, allowing for the accurate
prediction of active metabolic reactions under specific conditions. This is particularly
important for developing high-quality models that are specific to cell types or tissues.
Additionally, the incorporation of single-cell omics data enhances the accuracy of GEMs,
enabling the construction of cell-type-specific models and expanding our knowledge of
cellular metabolism.

In conclusion, the integration of GEMs with multi-omics data, powered by the incor-
poration of ML approaches, has the potential to significantly enhance our understanding of
biological systems and their underlying mechanisms. These advancements pave the way
for precision medicine and the development of targeted interventions for human health
and disease.
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