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Ventral actin stress fibers (SFs) are a subset of actin SFs that begin and terminate at
focal adhesion (FA) complexes. Ventral SFs can transmit forces from and to the
extracellular matrix and serve as a prominent mechanosensing and
mechanotransduction machinery for cells. Therefore, quantitative analysis of
ventral SFs can lead to deeper understanding of the dynamic mechanical
interplay between cells and their extracellular matrix (mechanoreciprocity).
However, the dynamic nature and organization of ventral SFs challenge their
quantification, and current quantification tools mainly focus on all SFs present in
cells and cannot discriminate between subsets. Here we present an image
analysis-based computational toolbox, called SFAlab, to quantify the number of
ventral SFs and the number of ventral SFs per FA, and provide spatial information
about the locations of the identified ventral SFs. SFAlab is built as an all-in-one
toolbox that besides analyzing ventral SFs also enables the identification and
quantification of (the shape descriptors of) nuclei, cells, and FAs. We validated
SFAlab for the quantification of ventral SFs in human fetal cardiac fibroblasts and
demonstrated that SFAlab analysis i) yields accurate ventral SF detection in the
presence of image imperfections often found in typical fluorescence microscopy
images, and ii) is robust against user subjectivity and potential experimental
artifacts. To demonstrate the usefulness of SFAlab in mechanobiology
research, we modulated actin polymerization and showed that inhibition of
Rho kinase led to a significant decrease in ventral SF formation and the
number of ventral SFs per FA, shedding light on the importance of the RhoA
pathway specifically in ventral SF formation. We present SFAlab as a powerful open
source, easy to use image-based analytical tool to increase our understanding of
mechanoreciprocity in adherent cells.
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1 Introduction

To establish and maintain mechanical homeostasis, adherent
cells adapt their morphological and mechanical state in response to
mechanical cues from their local microenvironment (Vogel and
Sheetz, 2006). It has become evident that cell behavior is regulated by
mechanical cues from their environment (Vogel and Sheetz, 2006;
Van Helvert et al., 2018), and that the regulation of mechanical
homeostasis relies on the dynamic mechanical interplay between
cells and their extracellular matrix (ECM), a phenomenon referred
to as mechanoreciprocity (Van Helvert et al., 2018; De Luca et al.,
2021). A myriad of proteins is involved in mechanoreciprocity,
starting with the ECM-connecting integrins. Integrins are
transmembrane proteins that recognize specific ECM ligands at
the extracellular domain, and connect to the actin cytoskeleton at the
intracellular domain via a collection of linker proteins (Jansen et al.,
2017). A collective of integrins and associated linker proteins is
called a focal adhesion (FA), and the assembly, disassembly, and
maturation of the FAs is regulated by the forces exerted on the FAs
(Kuo, 2013). For mechanoreciprocity, talin and vinculin are
important linker proteins in FAs, connecting the integrins to the
contractile actomyosin machinery and transmitting force from the
ECM to the actomyosin network and vice versa (Jansen et al., 2017).

The actomyosin machinery in cells functions as a mechanical
stress generator and transducer to enable various processes, such as
tissue morphogenesis, cell migration, and muscle contraction
(Murrell et al., 2015). In brief, myosin II motors bind to
filamentous actin (F-actin) polymers and drive the translocation
of two bound F-actin polymers, resulting in a contraction or
extension force (Murrell et al., 2015). The assembly of the
actomyosin machinery consists of two important steps: 1)
establishment of FA sites, and 2) recruitment of F-actin and
associated proteins into contractile bundles, which is mediated by
the Rho signaling pathway (Small et al., 1998).

Myosin II and F-actin are held together by crosslinking proteins
and together form complex structures that are called stress fibers
(SFs). Based on the FA connectivity and structural organization,
different subtypes of SFs are defined (e.g., dorsal SFs, ventral SFs,
transverse arcs, and perinuclear actin). Ventral SFs are generally
accepted to be particularly relevant in mechanoreciprocity, because
they are connected to the ECM via FAs at both ends and consist of
contractile actomyosin bundles rich in myosin II, although complete
understanding of their role is missing (Tojkander et al., 2012).
Ventral SFs have different lengths and orientations within the
cell and are mostly found at the ventral surface of a cell, believed
to play an important role in cell migration (Narasimhan, 2022).
Since ventral SFs are under constant tension, they are assumed to be
almost straight filaments without significant buckling (Narasimhan,
2022). To date, our understanding of ventral SF behavior mainly
evolved from qualitative studies, demonstrating the complex nature
of these structures, and urging the need to accurately quantify them
in space and time to unravel their role in mechanosensing and
mechanoresponsive.

In contrast to the easily distinguishable FAs, the organization
and dynamics of SFs challenge their identification and subsequent
quantification via analysis of microscopic images. So far, several
image analysis-based tools have been developed to quantify SFs
using fluorescent imaging (Rogge et al., 2017; Zhang et al., 2017;

Zonderland et al., 2019; Nowak et al., 2020). While most tools aim to
quantify all SFs present in cells, very few diversify towards the
identification and quantification of individual SF subsets, such as the
ventral SFs (Elosegui-Artola et al., 2014; Hauke et al., 2021). For the
quantification of ventral SFs, Hauke et al. identified FAs and SFs in
cells from microscopic images, and cross-correlated their positions
to assess, amongst others, the number of ventral SFs per cell and
ventral SF length (Hauke et al., 2021). While this method results in
fast coupled analysis of FAs and SFs, the output is dependent on the
accuracy and robustness of the correlation procedure, and on user
subjectivity. Another approach, published by Elosegui-Artola et al.,
utilized the location of the FAs as starting and end points for a curve
fitting procedure to identify ventral SFs based on maximum
intensity projections, thus avoiding the need for cross-correlation
(Elosegui-Artola et al., 2014). This method allows identification of
curved SFs but has the drawback that the skew of such curves is
determined by the orientation of the SF in relation to the reference
image. Moreover, this method does not allow for manual disregard
of identified curves that do not represent ventral SFs.

In this study, we present an easy-to-use, freely available image
analysis-based algorithm, called SFAlab, that circumvents the
drawbacks of orientation dependency and the lack of user control
over omitting the identification of ventral SFs that are biologically
unreasonable. Starting from a similar approach as Elosegui-Artola
et al., SFAlab identifies ventral SFs in fluorescent images of cells in
2 dimensions (2D) stained for vinculin and F-actin, based on their
maximum intensity. To prevent the fitting of curves that do not
represent ventral SFs, we constructed a penalty function in the fitting
algorithm that discourages SFAlab to fit curves with shapes that are
unrealistic for ventral SFs (e.g., too much curvature or too large
relative length). Moreover, our algorithm can fit curves of arbitrary
orientation, which enables comparison of the same ventral SFs
over time.

We first validate SFAlab and show that the algorithm can be
used to determine the number of SFs and the amount of SFs/FA for
human cardiac fibroblasts (cFBs), together with the maximum
curvature and relative length of the ventral SFs found. Next, we
demonstrate the accuracy and robustness of SFAlab in the presence
of typically occurring image imperfections and user subjectivity.
Finally, we show the biological relevance of ventral SF detection
using SFAlab. We demonstrate that we can quantify the influence of
Y-27632, a highly selective inhibitor of the RhoA pathway that
promotes SF assembly (Iwamoto et al., 2000; Darenfed et al., 2007),
on ventral SF formation, showing the direct effect of the RhoA
pathway on the formation of ventral SFs in cFBs. Together, our
findings indicate SFAlab to be a powerful tool to identify and
quantify ventral SFs, which can progress our understanding of
the mechanisms behind ventral SF formation and the role of
ventral SFs in the dynamic mechanical reciprocity of adherent
cells in vitro.

2 Materials and methods

2.1 Code availability

The SFAlab source code has been written in MATLAB (version
8.6.0.267,246, R2015b, glnax64) and can be found, together with a
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detailed user manual, on https://gitlab.tue.nl/stem/sfalab. SFAlab is
open-access and freely available for use and further development.

2.2 SFAlab development and working
principle

The main principles (core functions) underlying the SFAlab
algorithm are 1) fitting shapes to objects in the fluorescent images
and extracting their spatial properties, and 2) fitting curves between
two objects in the fluorescent images using maximummean intensity.
Besides these core functions, SFAlab contains multiple extended
analysis functions that enable preprocessing of raw image files, and
then initiate the appropriate core function for analysis. SFAlab can be
divided into fourmodules: 1) themaskmodule for cell masking, 2) the
FAmodule for shape fitting and the extraction of the properties of the
identified objects, 3) the SF module, for curve fitting between two FAs
in the same mask to identify ventral SFs and the extraction of their
properties, and 4) the SF evaluation module, which allows the user to

evaluate the SF output and extract and visualize the valid curves. The
users can choose to either perform the entire analysis or only specific
modules. A schematic algorithm construction and the working
principle of SFAlab are visualized in Figure 1.

Within the first module, a binary cell mask is defined to determine
properties of the identified FAs per cell and restrict the curve fitting
procedure to find SFs only between FAs within a certain cell, and not
between different cells. As input, the mask module uses a composite
image of the FA and the SF channel (Figure 1A), normalizes the
individual images to have a maximum intensity of 1, and sums up the
individual channels, again having a maximum intensity of 1. Next,
image dilation, Gaussian filtering, and binarization are performed.
Finally, a size filter and border check allow the user to select the cell of
interest for further analysis. The output is a binary image of the cell
mask (Figure 1B) and a corresponding text file with the properties of
the identified cell mask (e.g., area, location, orientation, etc.).

Since SFAlab uses the locations of FAs as the starting points to
search for SFs, in Module 2 the FAs within the mask are identified
using a set of image-filtering techniques to remove noise and any

FIGURE 1
Schematic overview of the algorithm construction and working principle of SFAlab. (A, B) The raw data serving as input for SFAlab (A) and the mask
created by the algorithm (B). (C, D) The raw vinculin image (C) and the preprocessed FA image (D). (E–H) For the raw SF image (E), subsequent contrast
filtering (F) and edge detection (G) was used for image preprocessing, resulting in image (H). Next, the identified cell mask, the spatial properties of the
FAs, and the preprocessed SF image are used as input for the curve fitting procedure to identify the ventral SFs (I). (I) Overlap between the raw SF
channel (grey) and the identified SFs (yellow) with subfigures J1 and J2, indicating magnified images of (J1) an overlap of the vinculin and F-actin channel,
and (J2) an overlap of raw SF channel and the identified SFs. Green boxes indicate the filtering techniques used for image preprocessing and the blue
boxes show the different SFAlab modules. Four result files (text files) are generated containing the morphological and spatial characteristics of the mask,
FAs, fitted curves, and identified ventral SFs.
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detectable signal from soluble vinculin from the raw FA images
(Figure 1C). Since the method of feature extraction, together with
the method of image pre-processing of the FA detection, are based
on previously published work from our group, we refer to de Vries
et al. (De Vries et al., 2014) and Buskermolen et al. (Buskermolen
et al., 2018) for detailed explanations, respectively. After image
preprocessing, FAs were segmented, their locations were
identified, and several morphological features (e.g., area, aspect
ratio) were quantified (Figure 1D). The output of the FA module
is a text file with the morphological and spatial characteristics of all
the identified FAs.

In the third module, image pre-processing of the SF image is
performed, with the aim to emphasize the structural features of the
SFs to enable SF identification (Figure 1E). The raw SF image is
subsequently subjected to contrast stretching and to a Canny filter,
which is an edge filtering technique (Ding and Goshtasby, 2001)
(Figures 1F,G). The result of the pre-processing is the sum of the raw
image, the contrast stretched image, and the edge filtered image
(Figure 1H). After pre-processing of the SF image, the curve fitting
procedure is performed to identify the ventral SFs. For the curve
fitting, more specifically the fitting of a quadratic parabola of
arbitrary orientation, the centroids of two FAs (FAi and FAj) are
superimposed on the preprocessed grey scale SF image, and the
polynomial between those two points is fitted that has the largest
mean intensity on the input image.

Lastly, in module four, the user can 1) visually inspect if SFAlab
correctly fitted curves representing the ventral SFs, and 2) evaluate
the mean arithmetic and geometric intensities, relative length and
maximum (unsigned) curvature of all the fitted curves obtained.
Since the parabola with the largest mean intensity may not resemble
a ventral SF that is biologically reasonable, SFAlab implements a
penalty function p) to constrain the curve fitting procedure:

p � 1 for χ < t

eA χ−t( ) for χ ≥ t
{ (1)

There are three penalty functions for three different curve
variables (χ′s) with corresponding thresholds (t’s). First, the
penalty function discourages the fitting algorithm to select
parabolas that are rewinding (when a curve shoots beyond its
target and loops back to one of the end points), where the
variable χ is the amount of overshoot and the threshold is zero
(hardcore). Besides curves that are rewinding, there is also a penalty
function for curve length and for maximum curvature, of which
both thresholds can be defined by the user. All three penalty
functions share the same amplitude A, which can be set by the
user as well.

When any of the detected curve properties passes a threshold
defined in the curve penalty function, a penalty is added to the mean
intensity of the curve (a multiplication factor), lowering its mean
intensity, and discouraging the chance of this curve being identified
as the curve with the highest mean intensity. When an attempted
curve suffers from passing multiple user defined thresholds, the
penalties on that curve accumulate.

Besides visual inspection and evaluation of the properties of the
identified ventral SFs, module four also contains a feature to
visualize the obtained ventral SFs over a background of choice
(white, black, the raw SF image, or the preprocessed SF image)
(Figure 1I).

2.3 Substrate preparations

Glass-bottom 12-well plates (MatTek, Ashland, United States)
and microscope glass slides were treated with a 14:1:1 solution of
absolute ethanol (VWR international, Amsterdam, the
Netherlands)/acetic acid (Merck, Amsterdam, the Netherlands)/
bind-silane (Sigma-Aldrich, Amsterdam, the Netherlands). After
1 h incubation, glass plates and slides were washed in ethanol and
dried with nitrogen. PAA gels with a Young’s modulus of 12 kPa
were prepared using a solution containing 93.8 μL acrylamide (40%
w/v, Bio-Rad, Veenendaal, the Netherlands), 25 μL bis-acrylamide
(2% w/v, Bio-Rad, Veenendaal, the Netherlands), 5 μL beads
(ThermoFisher, Waltham, United States), 2.5 μL ammonium
persulfate (10% w/v, Bio-Rad, Veenendaal, the Netherlands), and
0.25 μL TEMED (Merck, Amsterdam, the Netherlands) 373.5 μL in
PBS. For traction force microscopy (TFM) purposes, 0.2 µm
fluorescent beads were added to measure cellular traction forces
while for immunofluorescence staining (IF) purposes, 0.2 µm non-
fluorescent beads were added to keep the culture condition similar.
Gels were prepared by pipetting 10 µL of PAA gel solution on the
treated glass-bottom 12-well plate (TFM) or microscopy glass slide
(IF). After pipetting, the PAA gel solution droplet was immediately
covered with a Ø12 mm coverslip (ThermoFisher, Waltham,
United States) to create flat PAA gels. PAA gels were left to
polymerize for 1 h and coverslips were gently removed in PBS.
Gel stiffness was verified (13.4 ± 2.0 kPa, n = 24 gels with
5 measurements per gel) using nano-indentation (Piuma Nano-
indenter, Optics11, Amsterdam, the Netherlands). PAA gels were
incubated with 1 mg/mL Sulfo-SANPAH (ThermoFisher, Waltham,
United States) under 365 nm wavelength ultraviolet light for 5 min
(Analytik Jena, Jena, Germany). After incubation, gels were washed
extensively with sterile PBS before coating with 50 μg/mL rat-tail
collagen type I (Corning, Amsterdam, the Netherlands) overnight at
4 °C. Collagen-coated PAA gels were washed twice in PBS, incubated
with medium for 20 min and seeded with 750 cells (in 50 µL culture
medium) per gel. When cells were attached after 4 h, medium was
added. For TFM experiments, cells were cultured for 12 h after cell
seeding on the PAA gels.

2.4 Cardiac fibroblast culture and Y-27632
treatment

Human epicardial-derived cardiac fibroblasts (cFBs) were kindly
provided by Prof. M.J.Th.H. Goumans (Leiden University Medical
Centre, the Netherlands). cFBs were isolated from human fetal
cardiac tissue collected with informed consent and anonymously
from elective abortion material of fetuses with a gestational age
between 10 and 20 weeks. This research was carried out according to
the official guidelines of the Leiden University Medical Center and
approved by the local Medical Ethics Committee (number P08.087).
cFBs were cultured in high-glucose Dulbecco’s modified Eagle’s
medium (Invitrogen, Breda, the Netherlands) supplemented with
10% fetal bovine serum (Greiner Bio-one, Alphen aan den Rijn, the
Netherlands) and 1% Penicillin Streptomycin (Gibco, Bleiswijk, the
Netherlands). The cFBs were cultured in flasks coated with 0.1%
gelatin from porcine skin in PBS (Sigma-Aldrich, Amsterdam, the
Netherlands) and passaged at 80% confluency until they were seeded
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on the PAA substrates. For Y-27632 experiments, medium with
10 μM Y-27632 (StemCell Technologies, Vancouver, Canada) was
added to the cells for 12 h before fixation for immunofluorescence
staining.

2.5 Immunofluorescence staining

The cFBs cultured on the PAA gels for 24 h were washed with
PBS thrice before and after fixation, and fixed in 3.7% formaldehyde
(Merck, Darmstadt, Germany) for 15 min. The cells were
permeabilized with 0.5% Triton-X-100 (Merck, Darmstadt,
Germany) in PBS for 10 min and blocked for non-specific
antibody binding with 10% horse serum (Sigma-Aldrich) in PBS
for 40 min. The cells were incubated overnight with the primary
antibodies at 4 °C in PBS with 1% horse serum. The cells were
washed 6 times with PBS for 5 min before incubating with the
secondary antibodies in PBS and phalloidin for 1.5 h. All used
primary and secondary antibodies and dyes are listed in
Supplementary Table S1. The cells were washed 2 times with PBS
before incubating with DAPI in PBS for 5 min to visualize the cell
nuclei. Finally, cells were washed 4 times with PBS for 5 min, and
thereafter coverslips were mounted on top of the substrates with
Mowiol (Merck, Darmstadt, Germany). Samples were stored
protected from light at 4 °C until visualization. All images
obtained were single confocal slices made at the basal side of the
cells to minimize signal from the apical cell side to contribute to the
SFs in the image. All images were acquired using a laser confocal
microscope (Leica TCS SP8X) with a 63x/1.4 oil immersion objective
at 100 Hz with 4x line averaging and a resolution of 2048 ×
2048 pixels.

2.6 Traction force microscopy

Since ventral SFs are connected to the ECM at both ends, they
are believed to be the main contributors to cellular traction forces
(CTFs) (Soiné et al., 2015). To investigate this, we quantified CTFs
live in cells while tampering with the formation of ventral SFs using
Rho-associated protein kinase (ROCK) inhibitor Y-27632. Similar to
the cells on PAA gels for immunofluorescence staining, medium
with 10 μM Y-27632 was added to the cells for 12 h before starting
CTF measurements. Before starting live cell and bead tracking, cells
were washed in PBS and medium was added. Cells and beads were
imaged using a Leica DMi8 microscope equipped with temperature
and CO2 control (Leica, Wetzlar, Germany). Timelapse imaging was
performed for 12 h, and images were acquired with a time interval of
30 min consisting of a phase contrast image for cell visualization and
a fluorescence image for bead tracking. After finishing the timelapse,
cells were removed by adding 5% SDS and a reference image was
acquired. Using the reference image, images acquired over the
timelapse were prepared for traction analysis by cropping and
aligning images. Bead displacements between any experimental
timepoint and the reference image were computed through a
custom algorithm based on Particle Image Velocimetry Lab
(PIVlab) (Thielicke and Sonntag, 2021) using an interrogation
window of 32 × 32 pixels and a 50% overlap. CTFs were
computed using a Fourier transform algorithm for elastic

hydrogel substrates with a finite thickness (Trepat et al., 2009).
Individual cells were selected and a mask surrounding the cell was
manually prepared for every timepoint. The traction force
magnitude of a cell in each timepoint was determined by
calculating the median value of all the traction magnitude values
within the mask of the cell. The traction magnitude of a cell over
time was calculated as the mean of calculated median values of each
timepoint. For all CTF calculations, MATLAB Version:
9.13.0.2,049,777 (R2022b) was used.

2.7 Statistics

All data are presented as mean ± SEM. For two group
comparisons, a Student’s t-test was used at 95% confidence
interval after normality and equal variances were checked with
Shapiro-Wilk test and Brown-Forsythe test, respectively. For
three group comparisons, a one-way analysis of variance
(ANOVA) was used at 95% confidence interval after normality
and equal variances were checked with Shapiro-Wilk test and
Brown-Forsythe test, respectively. For all comparisons, p <
0.05 was considered statistically significant.

3 Results

3.1 Validation of SFAlab

To validate the accuracy of SFAlab in identifying ventral SF,
we created artificial ventral SFs images (as synthetic ground
truth) and analyzed these images using SFAlab. Besides
validation against a ground truth, we also qualitatively
assessed accurate detection of ventral SFs by visual correlation
of the rendered SFs from SFAlab with a representative raw
immunofluorescence cell image (Figure 2).

First, we created curved SFs and analyzed these structures using
SFAlab (Figures 2A,B). We found that SFAlab was able to identify
these structures and that the output of SFAlab contained the same
number of FAs, SFs, and SFs/FA as presented in the input figure.
Moreover, in contrast to the existing tools available to quantify
ventral SFs to date (Elosegui-Artola et al., 2014), SFAlab allows the
user to quantify ventral SFs in cells of arbitrary orientations, since
this is necessary for comparison of the same ventral SF over time
(e.g., during timelapse imaging). In brief, we parametrized the curve
that goes into the intensity optimization algorithm with distance d,
angle θ, and a for a parabola y = ax2 + bx + c. This allows us to get a
curve with arbitrary curvature and skew from a second-order
polynomial. So for each pair of FAs we only use their distance d
and not their actual pixel coordinates to generate curves with various
values for a and θ for that distance d (Supplementary Figure S1),
These curves are then rotated and translated to the actual pixel
coordinates of the FAs in the image To validate this, we artificially
created five curves with identical shape descriptors except for the
orientation and assessed how well the SFAlab algorithm identified
these curves (Figures 2C,D). Like the curves and lines with different
shape descriptors from Figure 2A, the SFAlab output showed good
agreement with respect to the original image, indicating the
suitability of SFAlab to analyze fibers of arbitrary orientation.
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To investigate the performance of the algorithm to detect ventral
SFs in cells, we determined the correlation between visually detected
ventral SFs from an immunofluorescence image of a single confocal
slice at the basal side of a cell and the identified ventral SFs from SFAlab
at a cellular (Figures 2E,F) and subcellular scale (Figures 2G–J). Visual
comparison on both scales shows good agreement between the ventral
SFs from the raw image and the curves fitted by SFAlab (Figures 2G,H,
white arrows). Moreover, SFAlab ignores actin fibers not originating
from nor terminating at a FA (Figures 2I,J, white arrow).

3.2 Accuracy of SFAlab in the presence of
image corruptions

To assess the accuracy of SFAlab, we tested different imaging
conditions by intentionally corrupting the original SF image with
artifacts that are often found in fluorescence micrographs as a result
of non-ideal imaging settings. The control image contained no
artificially added Poisson noise (λ = 0), had an image resolution of
2048 × 2048 pixels by pixel, and was 8-bit. In short, the following image
corruptions were implemented: 1) Poisson noise was added for two
arbitrary values (λ = 16, 81) to simulate imaging imperfections due to

noise, 2) image resolution was decreased to 1,024 × 1,024 and 512 ×
512 pixels to simulate differentmicroscopy settings, and 3) the SF image
was converted to a 6-bit image to scale the dynamic range to simulate
differences in bit depth. The results of the effect of these image condition
manipulations on the amount of identified ventral SFs, the number of
SFs/FA, and the maximum curvature and relative length can be found
in Figure 3. The relative length is defined as the length of the curve L)
divided by the distance d) between the two FAs (L/d).

When the original SF image was noise corrupted (Figures 3A,B),
the number of detected SFs and with that the amount of SFs/FA
increased with increasing λ (Figures 3C,D). Specifically, with λ = 16,
the number of SFs increased to 76 and the amount of SFs/FA to 2.4 ±
1.9 as opposed to the control image with 65 identified SFs and 2.1 ±
1.6 SFs/FA. When λ was increased to 81, the number of SFs
increased to 221, with a significant increase in the amount of
SFs/FA to 3.9 ± 3.1 as opposed to the control (p = 0.002) or to
the λ = 16 condition (p = 0.02) (Figure 3D). For the relative length
and the maximum curvature, no effect of noise corruption was
found (Figures 3E,F). It should be noted that the increase in number
of SFs was not an effect of an increase in signal intensity, since the
intensity threshold for accepting curves as SFs was proportionally
adjusted to the amount of intensity added by the noise. Moreover,

FIGURE 2
Accuracy of curve fitting procedure and qualitative validation of SFAlab. (A, C) Synthetic ground truth images containing almost straight lines and
curves, mimicking stress fiber (SF) shapes found in cells. (B, D) Rendered SF image indicating accurate detection of the ground truth. (E, G, I)
Representative raw data showing a cardiac fibroblast at a cellular level and two zoomed images depicting subcellular locations where ventral SFs are
expressed (G) or not expressed (I) (nucleus = blue, vinculin = green, F-actin = red). (F,H J) The curve fitting procedure of SFAlab can identify the
ventral SFs from the raw image (raw image = grey, identified curves = yellow) and does not detect SFs that do not originate from and terminate in a focal
adhesion (white arrows). Scale bar = 50 μm.
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when the intensity was adjusted to detect the same number of SFs
from each image, some identified SFs in the λ = 16 and 81 image
differed from the control, indicating a loss of accuracy in ventral SF
detection with increasing noise. When the resolution or the dynamic
pixel intensity range was decreased, only a slight increase in the
number of SFs was found, with no significant effect on the amount of
SFs/FA or the maximum curvature of relative length of these SFs
(Figures 3I-L, Figures 3N-Q).

Together, these results indicate that ventral SF identification by
SFAlab is most susceptible to noise corruption and hardly affected
by differences in resolution or bit depth. This highlights the
applicability of SFAlab for multiple imaging conditions and the
importance of minimizing noise corruption during image
acquisition when using SFAlab.

3.3 Robustness of SFAlab towards user
subjectivity

Since image preprocessing can be prone to user subjectivity, we
assessed the robustness of our algorithm by testing how variations in
the preprocessing parameters of the SF module affect the results

obtained by SFAlab. During preprocessing of the SF image three
parameters can be set: 1) the image intensity values to be mapped
(contrast stretching), 2) the thresholds for the canny filter (edge
detection), and 3) the weight of the contrast stretched image and the
edge detection image in determining the final preprocessed SF
image. In the control image the pixels between the lowest 10%
and highest 50% were mapped, the threshold values for the canny
filter were set to 0.005 and 0.3, and the weight of the contrast
stretched image versus the edge detection image was 3 to 1. The
values of the SF preprocessing parameters that led to the most
accurate overlap between rendered ventral SFs and ventral SFs found
visually were chosen as control values.

When altering the upper- and lower-pixel value limits over
which the image was to be stretched, a clear increase was found in
the number of ventral SFs detected when the difference in intensity
between SFs in the raw SF image was decreased, together with a
slight increase in the amount of SFs/FA (Figures 4A–D). Specifically,
when only 2% of the pixel values was excluded, as opposed to 60% in
the control sample, SFAlab detected 45 SFs compared to the 65 SFs
identified for the control. Moreover, when 90% of the pixel values
were excluded, the algorithm detected 144 SFs. The increase in
number of SFs detected when more contrast stretching was applied

FIGURE 3
Accuracy of the SFAlab algorithm upon image manipulations. (A,B) Representative preprocessed SF image after adding Poisson noise. (C-F)
Properties of the identified ventral SFs upon noise addition. (G-H) Representative preprocessed SF image after decreasing resolution. (I-L) Properties of
the identified ventral SFs decreasing resolution. (M) Representative preprocessed SF image after decreasing bit depth. (N-Q) Properties of the identified
ventral SFs upon decreasing bit depth. The accuracy of the SFAlab algorithm upon imagemanipulations was assessed for fivemore cells and this data
can be found in Supplementary Figure S2.
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can be explained as follows: because SFAlab fits curves based on the
mean intensity, a low intensity SF that is in close vicinity to a high
intensity SF will not be identified as the highest mean intensity
projection and therefore not be detected. However, when significant
contrast stretching is applied, the intensity difference between those
two fibers becomes less, allowing SFAlab to fit curves on both SFs.
For maximum curvature and relative length, no differences were
observed upon contrast stretching (Figures 4E,F).

With increased thresholds for the edge detection filter (Figures
4G,H), only a slight increase was observed for the number of
identified SFs, and no difference was found for the number of
SFs/FAs (Figures 5I,J). Similar to contrast stretching, maximum
curvature and relative length of the identified ventral SFs were not
affected by differences in thresholds for edge detection
(Figures 4K,L).

Lastly, when increasing the weight of the edge detection image in
creating the final preprocessed SF image, SFAlab detected fewer SFs
and SFs/FAs (Figures 4O,P). Specifically, choosing equal weights for
the contrast stretched image and the edge detection image resulted

in 51 detected SFs, whereas giving the edge detection image a three
times higher weight than the contrast stretched image resulted in
36 identified SFs. Additionally, whereas no significant differences
were detected in the amount of SFs/FA between the control image
and when both images had similar weights, a significant decrease
was found when the edge detection image had a three times higher
weight than the contrast stretched image.

Together, these results indicate the dependency of the properties
of the identified SFs on the subjectivity of the user and highlight the
importance of contrast stretching and the weight of imageA and E in
determining the number of identified ventral SFs and the amount of
SFs/FA.

3.4 SFAlab shows that Y-27632 treatment
decreases amount of ventral SFs

Having validated that ventral SFs could be identified by SFAlab,
we next used SFAlab to investigate the effect of the RhoA pathway

FIGURE 4
Robustness of the SFAlab algorithm. (A-B) Representative preprocessed SF image after contrast stretching for different values. (C-F) Properties of the
identified ventral SFs uponmanipulation of the threshold values for contrast stretching. (G-H) Representative preprocessed SF image after applying edge
detection for different values. (I-L) Properties of the identified ventral SFs upon manipulation of the threshold values for edge detection. (M-N)
Representative preprocessed SF image after altering the weight of the contrast stretched and the edge detection image. O-R) Properties of the
identified ventral SFs upon adapting the weight of the contrast stretched and the edge detection image in determining the final SF image. The robustness
of the SFAlab algorithm was assessed for five more cells and this data can be found in Supplementary Figure S3.
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on ventral SF formation, by treating human cFBs with Y-27632, a
selective inhibitor of Rho-associated kinase (ROCK). First, to assess
the effectiveness of Y-27632 on cFBs, we qualitatively assessed FA
and SF expression (Figures 5A–G) and determined cellular traction
forces (CTFs), as literature shows that Y-27632 treated cells exhibit
reduced levels of internal stress (Beningo et al., 2006). In order to
keep similar experimental conditions, all cells analyzed were
cultured on 12 kPa PAA gels. Whereas the untreated cFBs
showed clear FA and SF expression (Figures 5A–C), the presence
of FAs was decreased and the SF formation was disrupted in the cells
treated with Y-27632, which is in accordance with what is shown in
literature (Iwamoto et al., 2000; Polio et al., 2014) (Figures 5D–F).
Moreover, determining the average CTFs revealed that cells treated
with Y-27632 show impaired cell contractility (p < 0.01) (Figure 5G).
Together, these results confirm the effectiveness of Y-27632 in
impairment of SF assembly and reducing CTFs.

Having confirmed that Y-27632 treatment affected the CTFs of
cFBs, we next investigated the effect of RhoA inhibition on ventral
SF formation using SFAlab. Since ventral SFs originate and

terminate in FAs, we first determined the FA expression in cells
treated with and without Y-27632. In line with previous work
(Lavelin et al., 2013; Stricker et al., 2013; Buskermolen et al.,
2018), we found a significant decrease in the number of FAs
present in the treated cells as opposed to the untreated cells (p <
0.01) (Figure 5H). In addition, a decrease in FA area was observed,
albeit not statistically significant (Figure 5I; p = 0.51).
Corresponding with the qualitative analysis, both the number of
SFs and the amount of SFs/FA decreased significantly in Y-27632
treated cells as opposed to the untreated control (Figures 5J,K).
Moreover, we found no difference in the maximum curvature but a
significant increase in the relative length of the ventral SFs detected
upon Y-27632 treatment as opposed to the untreated control
(Supplementary Figure S4). Together, these results indicate a
decrease in FA expression, concurrent with a decrease in ventral
SF formation upon inhibition of RhoA associated SF formation.
Also, this data demonstrates the usefulness of SFAlab for obtaining
quantitative insights to potentially aid in studying the role of ventral
SFs in mechanoreciprocity.

FIGURE 5
Y-27632 affects cellular morphology, cellular traction forces, and FA and SF presence in human cardiac fibroblasts (cFBs). (A-F) Representative
fluorescent images of cFBs after 24 h of culture without Y-27632 (A-C) or with Y-27632 (D-F). Scale bar = 50 μm. (G) Quantification of cellular mean
traction forces measured on 12 kPa polyacrylamide gels ((−) Y-27632, n = 32 cells (+) Y-27632, n = 29 cells). (H) Quantification of the number of FAs
(number of cells (−) Y-27632, n = 12 (+) Y-27632, n = 12). (I)Quantification of the FA area (number of cells (−) Y-27632, n = 12 (+) Y-27632, n = 12). (J)
Quantification of the number of ventral SFs (number of cells (−) Y-27632, n = 12 (+) Y-27632, n = 12). (K)Quantification of the number of ventral SFs per
number of FAs.
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4 Discussion

An easy-to-use and reliable method to quantify ventral SFs in
adherent cells in 2D would be of significant benefit to unravel
mechanisms underlying ventral SF formation and to better
understand the role of ventral SFs in mechanoreciprocity.
Quantification of actin SFs using image analysis-based
approaches has been successfully used before (Rogge et al., 2017;
Zhang et al., 2017; Zonderland et al., 2019; Nowak et al., 2020), but
quantification of the subset of ventral SFs remained challenging so
far. Ventral SFs are of importance in mediating mechanosensing and
mechanoresponsive because of their direct connection to the
extracellular environment and the strong traction forces they can
produce (Soiné et al., 2015). In this study we present an image-based
computational framework, called SFAlab, to identify and quantify
ventral SFs from microscopic fluorescence images of cells. Whereas
detection and quantification of SFs in general is useful, being able to
quantify a subset of SFs, the ventral SFs, is especially valuable to
learn about the function of these structures. Besides the number of
ventral SFs, SFAlab also enables detection of the amount of SFs per
FA and gives spatial information about the locations of the detected
ventral SFs, providing important insights for mechanobiological
studies.

Validation of SFAlab indicated good agreement with the
ventral SFs detected via visual inspection of fluorescence
microscopy images and with the imposed ventral SFs in a
synthetic ground truth. We note that local artefacts or imaging
corruptions might hamper SFAlab to accurately detect ventral SFs
in an image, indicating the relevance to visually validate the
identified ventral SFs (and their shape descriptors) using the
built-in evaluation tool of SFAlab. Analysis of the accuracy and
robustness of SFAlab revealed that the detection of ventral SFs is
most affected by noise corruption and by contrast stretching
during preprocessing of the raw SF image. This indicates the
importance of considering the degree of noise and maintaining
a similar amount of noise between images when analyzing images
with SFAlab. To our knowledge, the accuracy and robustness of
ventral SFs identification with respect to typically occurring
imaging imperfections and user subjectivity has not been
assessed before. Yet, Eltoner et al. also acknowledges a decrease
in accuracy when using their FilamentSensor tool to detect SFs in
fluorescence images with noise corruption (Eltzner et al., 2015).
Besides considering noise, optimizing the right amount of contrast
stretching and keeping this variable constant between
experimental groups is of importance for accurate ventral SF
detection and for comparing results between experimental
groups. Especially when the raw image contains SFs with low
mean pixel intensity in proximity of SFs with high mean pixel
intensity, saturating a vast number of pixel intensity values is
advised to also detect the low mean pixel intensity SFs. To simplify
this optimization, the user can assess the effect of the amount of
contrast stretching on ventral SF detection using the SF-evaluate
function of SFAlab.

Human cFBs were treated with Y-27632 to compare ventral
SF expression with respect to untreated cells. The output of
SFAlab demonstrated the influence of the RhoA effector
ROCK on the expression of ventral SFs, showing a decrease in
ventral SF presence upon ROCK inhibition. These results were in

line with our expectations since ventral SFs exert the strongest
cellular traction forces of all the SF subtypes (Soiné et al., 2015;
Narasimhan, 2022). However, an increase in relative length and
no significant difference in maximum curvature of the detected
ventral SFs contradict the outcome of two studies that investigate
the effect of Y-27632 on the shape of peripheral arcs, showing a
decrease in maximum curvature and relative length upon Y-
27632 treatment (Bischofs et al., 2008; Labouesse et al., 2015).
These opposing results might be explained by the fact that both
studies investigate the shape descriptors of a few (confined)
peripheral SFs, whereas we consider all ventral SFs present in
a cell. Whereas the effect of Y-27632 on SFs in general in well
documented (Svoboda et al., 2004; Gates et al., 2007; Katoh et al.,
2007), our study is the first to our knowledge that quantitatively
shows the effect of ROCK inhibition on ventral SFs specifically,
making use of the feature of SFAlab that enables assessment of
only ventral SFs. We demonstrated that Y-27632 treatment
reduced the number of FAs and ventral SFs, and the amount
of SFs/FA.

Besides quantification of the number of ventral SFs, SFAlab
provides spatial information about the location of these ventral SFs,
and about the amount of SFs/FA. Moreover, SFAlab allows the
possibility to assess the orientation of these ventral SF to shed light
on cell polarity, although this output parameter is not included in
the present study. While not possible with the current study design
because of FA and SF visualization in fixed cells, we envision a
promising role of combining SFAlab and traction force microscopy
with live-cell imaging of FAs and SFs, to provide spatiotemporal
information about the role of ventral SFs in mechanosensing and
mechanoresponsive. In fact, since the curve fitting procedure in
SFAlab works independently of ventral SF orientation, it allows the
identification and quantification of ventral SFs in actively migrating
live cells. This way, the spatial information gathered from SFAlab
could be linked to the spatial output of TFM, assessing the
importance of ventral SFs and the number of SFs/FAs in
generating local cellular traction forces.

We focus on the identification of ventral SFs in the present
study, but SFAlab is built as an all-in-one toolbox that also enables
the identification and quantification of the shape descriptors of
nuclei, cells, and FAs. While several studies have reported separate
algorithms for the quantification of nuclei, cells, and FAs
(Buskermolen et al., 2018), it is advantageous to combine these
quantifications in the same cells, using a single user-friendly
graphical user interface and the same core functions for each
analysis, making it possible to couple data from the different
analysis functions. It should be noted that the results in the
present study are focused on FA protein vinculin and the
cytoskeletal protein F-actin, but also other FA proteins, such as
integrins and zayin (Goldmann, 2012; Kuo, 2013), can be analyzed
to detect ventral SFs using SFAlab. Moreover, SFAlab is not limited
to analysis on single cells but it can quantify the expression of ventral
SFs in multiple cells at once due to the masking procedure if the cells
to be analyzed do not touch each other. Since SFAlab is Open Source
the algorithm can be expanded to extend its usage, for example, with
a function to quantify ventral SF width or cell polarity based on
ventral SF orientation.

To conclude, we present a robust and accurate image analysis-
based approach to quantify ventral SFs in adherent cells in 2D,
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which can be a valuable analytical tool to gain deeper knowledge of
the mechanisms of ventral SF formation and of their role in
mechanosensing and mechanoresponsive.
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SUPPLEMENTARY FIGURE S1
(A, B) Drawbacks of the formula y = ax2 + bx + c. (A)With polynomials y = ax2

+ bx + c through focal adhesions Fi(xi=1, y1 = 3) and Fj = 11, yj = 12) (black
dots), colour coded for various values for −0.1 ≤ a ≤0.1. This results in
skewed profiles when yi ≠ yj and the skew is fixed: if the skew had a different
sign, the fit through the red point at (10,9) (dashed black line) would have
looked like amirror image of the blue line for a = −0.1 but we cannot fit that
curve with these equations. (B) Polynomials y = -0.15x2 + bx + c through a
focal adhesion of length 10 in different colour coded orientations: 75° ≤ θ ≤
75°. The orientation of the skew depends on the sign of the angle, and the
appreciable (symmetric) curvature for a = −0.15 degenerates to a straight line
for large rotations away from the horizontal (−75°, 75°). (C, D) For a given
distance d between two FAs, we can get a curve with arbitrary curvature
and skew from a second-order polynomial by variation of the parameters a
and θ. (C) The parameters a and θ allow you to select any part from a
second-order polynomial for given d (black lines, d = 3

4). (D) The selected
curves (bold) are rotated and translated to the positions and image
orientations of the FAs (black dots) for evaluation of the curves mean
intensity. Note that an opposite skew is simply obtained by changing the
sign of θ for given d and a (dashed curves).

SUPPLEMENTARY FIGURE S2
Accuracy of the SFAlab algorithm upon image manipulations. (A–D)
Properties of the identified ventral SFs upon noise addition. (E–H) Properties
of the identified ventral SFs after decreasing resolution. (I-L) Properties of
the identified ventral SFs upon decreasing bit depth. N (number of cells
analyzed) = 6.

SUPPLEMENTARY FIGURE S3
Robustness of the SFAlab algorithm. (A-D) Properties of the identified ventral
SFs upon manipulation of the threshold values for contrast stretching. (E-H)
Properties of the identified ventral SFs upon manipulation of the threshold
values for edge detection. (I-L) Properties of the identified ventral SFs upon
adapting the weight of the contrast stretched and the edge detection image
in determining the final SF image. N (number of cells analyzed) = 6.

SUPPLEMENTARY FIGURE S4
Maximum curvature and relative length of ventral SFs detected in cells upon
Y-27632 treatment as opposed to the untreated control cells (number of
cells, (−) Y-27632, n = 12, (+) Y-27632, n = 12). * = p < 0.05.
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