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Abstract
Aims/hypothesis Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic
regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess
early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of
autoantibodies.
Methods Reduced representation bisulphite sequencing (RRBS) was applied to study DNAmethylation in purified CD4+ T cell,
CD8+ T cell and CD4−CD8− cell fractions of 226 peripheral blood mononuclear cell samples longitudinally collected from seven
type 1 diabetes-specific autoantibody-positive individuals and control individuals matched for age, sex, HLA risk and place of
birth. We also explored correlations between DNA methylation and gene expression using RNA sequencing data from the same
samples. Technical validation of RRBS results was performed using pyrosequencing.
Results We identified 79, 56 and 45 differentially methylated regions in CD4+ T cells, CD8+ T cells and CD4−CD8− cell
fractions, respectively, between type 1 diabetes-specific autoantibody-positive individuals and control participants. The analysis
of pre-seroconversion samples identified DNA methylation signatures at the very early stage of disease, including differential
methylation at the promoter of IRF5 in CD4+ T cells. Further, we validated RRBS results using pyrosequencing at the following
CpG sites: chr19:18118304 in the promoter of ARRDC2; chr21:47307815 in the intron of PCBP3; and chr14:81128398 in the
intergenic region near TRAF3 in CD4+ T cells.
Conclusions/interpretation These preliminary results provide novel insights into cell type-specific differential epigenetic regu-
lation of genes, whichmay contribute to type 1 diabetes pathogenesis at the very early stage of disease development. Should these
findings be validated, they may serve as a potential signature useful for disease prediction and management.

Keywords DNAmethylation . Epigenetics . T cells . Type 1 diabetes

Riitta Lahesmaa and Ubaid Ullah Kalim share last authorship.

* Ubaid Ullah Kalim
ubaid.ullah@utu.fi

* Riitta Lahesmaa
rilahes@utu.fi

1 Turku Bioscience Centre, University of Turku and Åbo Akademi
University, Turku, Finland

2 InFLAMES Research Flagship Center, University of Turku,
Turku, Finland

3 Turku Doctoral Programme of Molecular Medicine, University of
Turku, Turku, Finland

4 Department of Computer Science, Aalto University, Espoo, Finland

5 Pediatric Research Center, Children’s Hospital, University of
Helsinki, and Helsinki University Hospital, Helsinki, Finland

6 Research Program for Clinical and Molecular Metabolism, Faculty of
Medicine, University of Helsinki, Helsinki, Finland

7 Children’s Clinic of Tartu University Hospital, Tartu, Estonia
8 Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
9 Institute of Biomedicine, University of Turku, Turku, Finland
10 Tampere Center for Child Health Research, Tampere University

Hospital, Tampere, Finland

https://doi.org/10.1007/s00125-022-05657-x

/ Published online: 10 February 2022

Diabetologia (2022) 65:844–860

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-022-05657-x&domain=pdf
https://orcid.org/0000-0003-4349-439X
https://orcid.org/0000-0002-3382-7966
https://orcid.org/0000-0002-2830-8192
https://orcid.org/0000-0003-3754-5584
https://orcid.org/0000-0001-6425-7006
https://orcid.org/0000-0001-6217-6659
https://orcid.org/0000-0001-8269-7291
https://orcid.org/0000-0002-5279-4493
https://orcid.org/0000-0002-1068-5918
https://orcid.org/0000-0001-5648-4532
https://orcid.org/0000-0002-0373-139X
https://orcid.org/0000-0003-0474-0033
https://orcid.org/0000-0002-2539-2296
https://orcid.org/0000-0002-4782-9567
mailto:ubaid.ullah@utu.fi
mailto:rilahes@utu.fi


Abbreviations
cis-eQTM cis-expression quantitative

trait methylation
DAG Diacylglycerol
DAISY The Diabetes Autoimmunity

Study in the Young
DMC Differentially methylated CpG site
DMR Differentially methylated region
eQTM Expression quantitative trait methylation
FDR False discovery rate-corrected p value
FUT Fucosyltransferase
GADA Autoantibodies targeting

glutamic acid decarboxylase
GO Gene Ontology
IA-2A Autoantibodies targeting islet antigen-2
IAA Autoantibodies targeting insulin
IBD Inflammatory bowel disease
PBMC Peripheral blood mononuclear cell
RA Rheumatoid arthritis
RNA-seq RNA sequencing
RRBS Reduced representation bisulphite

sequencing
RU Relative units
TCR T cell receptor
TSS Transcription start site
ZnT8A Autoantibodies targeting zinc transporter-8

Introduction

Type 1 diabetes is a complex autoimmune disease with a
strong genetic component. Genome-wide association studies
(GWAS) have identified more than 60 genetic loci associated
with the risk of type 1 diabetes [1–3]. However, genetic vari-
ation alone cannot explain the conspicuous rise in the disease
incidence during the past decades [4]. Several environmental
factors, including viral infections, diet, toxins and other deter-
minants, have been implicated [5].

Environmental exposures may result in epigenetic modifi-
cations of DNA, chromatin and histone proteins that change
the level of gene expression. The importance of epigenetic
gene regulation in complex disease phenotypes has been high-
lighted for several autoimmune disorders, such as rheumatoid
arthritis (RA) and inflammatory bowel disease (IBD) [6, 7].

�Fig. 1 Study design and analysis workflow schematics. (a) Study design.
Each case individual is visualised as a red line above the corresponding
control individual, visualised as a black line. The sample collection time
points are marked as triangles. Diagnosis of type 1 diabetes and
seroconversion are marked as blue and red asterisks, respectively. (b)
The schematic shows the outline of the RRBS data analysis workflow.
Both (a) and (b) were created with BioRender. M-biases, biased average
methylation level at 5′ or 3′ of the reads; PC1, principal component 1;
PC2, principal component 2; PCA, principal component analysis

b
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2. Extraction of methylation counts
Bismark methylation extractor, removed
M-biases, merged information from both strands

Published
RNA-seq data [16]

1. Preprocessing
TrimGalore, fastQC and Bismark-alignment of paired-end RRBS reads

2. SNP removal
BS-SNPer for merged
bam files

3. Coverage filtering
Removed CpGs with coverage >99.9th percentile
Merged technical replicates
Required minimum coverage 10 in at least 2 matching time
points in at least 5 (out of 7) case–control pairs

4. Differential methylation analysis
PQLseq + spatial combination to DMRs for (1) all samples
and (2) the samples collected before seroconversion
Covariates: PC1, PC2, class, age, pair, individual

5. Interpretation
Annotation to genomic parts and nearest genes
Observed methylation-expression correlations
Known eQTM effects (BIOS QTL database)
GeneHancer database
Pathway enrichment analysis

6. Validation of selected targets by bisulphite pyrosequencing
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DNA methylation is one of the most well-studied and key
epigenetic modifications. It represents the addition of a methyl
group to cytosine usually at the CpG dinucleotide and is typi-
cally associated with gene expression silencing [8].

A few studies identified a link between DNA methylation
in circulating immune cells and type 1 diabetes [9–13].
However, most of those studies focused on individuals who
had already developed clinical type 1 diabetes. A recent study
examined DNA methylation changes in peripheral blood
samples longitudinally collected before the diagnosis of type
1 diabetes from children enrolled in the prospective Diabetes
Autoimmunity Study in the Young (DAISY) cohort [14].
However, the study was limited by the use of a 450 K array
for methylation profiling that restricts the analysis to approx-
imately 450,000 targeted CpG sites.

The detection of type 1 diabetes-associated autoantibodies
targeting insulin (IAA), glutamic acid decarboxylase
(GADA), tyrosine phosphatase-like protein (islet antigen-2,
IA-2A) and zinc transporter-8 (ZnT8A) is currently the prima-
ry method to predict the development of type 1 diabetes.
Children who develop multiple autoantibodies are very likely
to progress to type 1 diabetes [15]. However, the appearance
of autoantibodies is an indication of an already ongoing auto-
immune reaction. Therefore, discovery of methylation chang-
es at the early stages of disease onset, before seroconversion,
could provide new insights into molecular mechanisms lead-
ing to type 1 diabetes.

The aim of this study was to assess early DNA methylation
changes associated with type 1 diabetes in longitudinally
collected samples from children who later developed islet auto-
immunity at a young age. We used the reduced representation
bisulphite sequencing (RRBS) approach instead of array-based
methods to achieve broader coverage including sites that are not
included in the arrays. Further, we purified the CD4+ T cell,
CD8+ T cell and CD4−CD8− cell fractions of peripheral blood
mononuclear cells (PBMCs) to determine cell type-specific
methylation differences that have not been reported earlier.
Besides identifying type 1 diabetes-associated DNA methyla-
tion changes, we investigated correlations between DNAmeth-
ylation and gene expression, exploiting our earlier RNA
sequencing (RNA-seq) study of the same samples [16]. The
identification of early DNA methylation changes associated
with type 1 diabetes will provide novel insights into the patho-
genesis of the disease, andmay serve as a potential signature for
disease prediction and management.

Methods

Study cohort The cohort analysed here using RRBS is described
in an earlier report on transcriptomics analysis of the same indi-
viduals [16]. DNA samples were longitudinally collected from
seven case–control pairs of the Pathogenesis of Type 1 Diabetes
– Testing the Hygiene Hypothesis (DIABIMMUNE) cohort
(Fig. 1a, electronic supplementary material [ESM] Table 1). In
total, we analysed 226 samples: 73, 77 and 76 for CD4+ T cells,
CD8+ T cells and CD4−CD8− cell fractions, respectively. The
study protocols were approved by the ethics committees of the
participating hospitals, and the parents gave written informed
consent. HLA genotyping was described earlier [16].
Autoantibodies IAA,GADA, IA-2A and ZnT8Aweremeasured
from serum with specific radiobinding assays. The cutoff values
were based on the 99th percentiles in children without diabetes,
which were 2.80 relative units (RU) for IAA, 5.36 RU for
GADA, 0.78 RU for IA-2A and 0.61 RU for ZnT8A. A sample
was considered seropositive when any of the autoantibodies
exceeded the threshold. The case individuals became positive
for at least two type 1 diabetes-specific autoantibodies at the
age of 1–2 years, whereas the control individuals remained
autoantibody-negative throughout the follow-up period. The
case–control pairs were matched by sex, place of birth, age and
HLA risk class. The age was matched ±2 months except for the
36 months samples, where the samples were collected within
4months. TheHLA risk classes were defined as described earlier
[17]. A detailed description of the study participants and their
antibody measurements is presented in ESM Table 2.

Sample fractionation and DNA extraction PBMC sample
collection, fractionation and viability of cells were as
described earlier [16]. DNA was extracted from CD4+ T cells,
CD8+ T cells and CD4−CD8− cell fractions with Qiagen’s
AllPrep Universal kit (Qiagen, Hilden, Germany, cat. No.
80224), according to the AllPrep DNA/RNA/miRNA
Universal Handbook, 09/2012.

RRBS library preparation The library preparation from
100 ng of genomic DNA was carried out according to a
protocol adapted from a gel-free multiplexed RRBS meth-
od [18]. Subsequent steps were performed as described
earlier [19].

HiSeq 2500 sequencing The samples were normalised and
pooled for the automated cluster preparation with an Illumina
cBot station (Illumina, San Diego, CA, USA). CD4+ T cell
libraries were run on eight lanes, 8–9 samples per lane. The
CD8+ T cell libraries andCD4−CD8− cell fraction libraries were
allocated to four pools, including 18–20 samples per pool. Each
pool was run on three lanes. The samples were sequenced with
an Illumina HiSeq 2500 instrument (Illumina) and TruSeq v3
sequencing chemistry (Illumina). Paired-end sequencing with

Fig. 2 DMCs. Methylation profiles of top-ranked DMCs between cases
and controls identified in CD4+ T cells (a–d), CD8+ T cells (e, f) and
CD4−CD8− fractions (g, h). The plots are coloured according to the
pairwise methylation difference, as specified in the colour key. Blue
and red indicate hypo- and hypermethylation of the CpG site in cases,
compared with controls, respectively. Black represents missing values.
The pairs of individuals are not in any particular order. A black dot in the
boxes indicates a sample collected after seroconversion. m, months

R
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2 × 100-bp read length was used with a 6-bp index run.
Technical quality of the HiSeq 2500 run was good, and the
cluster amount was as expected. More than 76% of all bases
above Illumina quality score Q30was required. The sequencing
runs of 37 samples were repeated due to low raw read counts
(less than 30 million reads per sample). The median yield of the
other samples was 47 million reads (read 1 + read 2).

RRBS data analysis RRBS data analysis was performed as
we described previously [20]. The data analysis workflow
is summarised in Fig. 1b. More detailed description is
also provided in the ESM Methods. Most of the data
analysis was done with R versions 3.6.1 and 4.0.4 [21].
The heatmaps in Fig. 2 were produced with the R package
hamlet [22]. Annotation of differentially methylated CpG
sites (DMCs) to genomic regions was carried out through
R package genomation version 1.16.0 [23] using Genome
Reference Consortium Human Build 37 (GRCh37/hg19).

Expression quantitative trait methylation analysis A list of
human whole blood cis-expression quantitative trait meth-
ylation (cis-eQTM, false discovery rate-corrected p value
[FDR] <0.1) effects was downloaded from the BIOS QTL
database [24] (accessed 1 April 2020), which is based on
3841 Dutch peripheral blood samples.

Methylation–expression correlation analysis We utilised our
published RNA-seq data from the same samples to calculate
methylation–expression correlations. Spearman correlations
across all samples within each cell fraction were calculated
between each DMC and all genes with transcription start sites
(TSSs) within a window of 250 kb in both directions from the
CpG site’s genomic location. The Ensembl identifiers and
gene names are from Ensembl versions 70 [25] and 75 [26].

Pathway enrichment analysis Gene Ontology (GO) terms
were used in the pathway enrichment analysis. Only DMCs
with adjusted p value (Benjamini–Hochberg-corrected p
value) <0.1 and their corresponding nearest and correlating
genes were used for the analysis. Pathways were considered
to be significantly enriched at FDR <0.05 (Fisher’s exact test).

Pyrosequencing PyroMark assay design 2.0 software (Qiagen)
was used to design the assays. Target-specific primers designed
with the software include a primer pair with site-specific biotinyl-
ation for target amplification and a pyrosequencing primer.
Sample preparations started with 200 ng of DNA from three
selected case–control pairs. Samples were first sodium
bisulphite-treated with EZ DNA Methylation-Gold Kit (Zymo
Research, Irvine, CA, USA, cat. No. D5006). Selected targets
were then amplified by PyroMark PCR Kit (Qiagen, cat. No.

Table 1 Top-ranked DMCs at FDR <0.0001 identified between cases and controls in all longitudinal samples

DMC (hg19) Fraction Methylation difference p value FDR, <0.0001 Nearest gene Genomic region

chr2:113192477 CD4+ 0.130 8.45×10−13 1.25×10−7 RGPD8 Promoter

chr11:42897003 CD4+ 0.456 1.42×10−12 1.40×10−7 HNRNPKP3 Intergenic

chr7:22861070 CD4+ −0.160 2.61×10−12 1.93×10−7 TOMM7 Intron

chr1:44878291 CD4+ −0.104 4.46×10−12 2.64×10−7 RNF220 Exon

chr11:118842572 CD4+ 0.101 1.25×10−10 3.71×10−6 FOXR1 Promoter

chr14:103227394 CD4+ −0.150 5.86×10−10 1.24×10−5 TRAF3 Intergenic

chr6:121069653 CD4+ −0.124 6.88×10−10 1.34×10−5 C6orf170 Intergenic

chr9:137674085 CD4+ −0.113 7.25×10−10 1.34×10−5 MIR3689C Intron

chr19:18118304 CD4+ −0.174 1.11×10−9 1.94×10−5 ARRDC2 Promoter

chr22:39633525 CD4+ 0.189 1.77×10−9 2.61×10−5 PDGFB Intron

chr16:32289963 CD8+ −0.130 5.21×10−11 1.27×10−5 LOC390705 Intergenic

chr2:27038339 CD8+ −0.186 2.78×10−10 4.31×10−5 CENPA Intergenic

chr9:79557441 CD8+ 0.154 5.37×10−10 7.04×10−5 PRUNE2 Intergenic

chr14:45343058 CD8+ −0.207 8.55×10−10 9.11×10−5 C14orf28 Intergenic

chr18:54333583 CD4−CD8− 0.131 1.26×10−17 7.62×10−12 WDR7 Intron

chr14:57523325 CD4−CD8− −0.299 5.17×10−13 1.25×10−7 EXOC5 Intergenic

chr3:194706028 CD4−CD8− −0.132 1.24×10−12 2.51×10−7 XXYLT1 Intergenic

chr5:173991159 CD4−CD8− 0.143 7.59×10−12 1.32×10−6 MSX2 Intergenic

chr19:38346420 CD4−CD8− 0.115 1.14×10−11 1.72×10−6 LOC100631378 Promoter

chr3:194705954 CD4−CD8− −0.138 3.75×10−11 5.06×10−6 XXYLT1 Intergenic

chr6:166419166 CD4−CD8− 0.104 5.30×10−11 6.44×10−6 LINC00473 Intergenic

chr11:134709660 CD4−CD8− 0.215 2.73×10−10 2.55×10−5 AK125040 Intergenic
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978703). A biotin-labelled template strand was then used for the
pyrosequencing reaction with a specific primer using PyroMark
Q24 system (Qiagen) with PyroMark Q24 Advanced CpG
Reagents (Qiagen, cat. No. 970922).

Results

RRBS analysis of different cellular fractions identified methyl-
ation differences in children at risk for type 1 diabetes When
including all the longitudinal samples into the differential meth-
ylation analysis model, we discovered 225, 114 and 87 DMCs in
the CD4+ T cell, CD8+ T cell and CD4−CD8− cell fractions,
respectively, at FDR <0.1 and absolute coverage-corrected mean
methylation difference >0.1 (Fig. 2, Table 1, ESM Table 3–5).

In the CD4+ T cells, the DMC located in the intergenic region
between TRAF3 and RCOR1 was hypomethylated in cases.
Furthermore, three highly significant DMCs were found at the
promoters of protein-coding genes: RGPD8, FOXR1 and
ARRDC2.A variant in ARRDC2 has been genetically associated
with early-onset Crohn’s disease [27]. In CD8+ T cells, the most
significant DMC was located in the intergenic region between
the pseudogene LOC390705 and a non-coding RNA,
LOC113002582. In the CD4−CD8− cell fraction, highly signifi-
cant differences in methylation were observed near protein-
coding genesWDR7 and EXOC5 (Table 1).

Further, to gain insights into biological functions of the
genes near DMCs, we performed GO pathway enrichment
analysis (Fisher’s exact test) on the sets of the nearest genes
for each cell type. For CD8+ T cells, two GO terms were
enriched: peptidyl-tyrosine phosphorylation (FDR = 0.035)
and cell differentiation (FDR = 0.045). No GO terms were
significantly enriched among the nearest genes for CD4+ T
cells or CD4−CD8− cell fractions.

Most of the DMRs were cell type-specific Although a single
CpG site might affect gene expression, often adjacent CpG
sites may act together in gene expression regulation [28].
Such DMCs can be combined into a differentially methylated
region (DMR). Therefore, we combined individual DMCs
within 2 kb with consistent methylation patterns into DMRs.
We identified 79, 56 and 45 DMRs between the cases and
controls in the CD4+ T cell, CD8+ T cell and CD4−CD8− cell
fractions, respectively (Fig. 3a, ESM Table 6–8). While the
majority of DMRs were cell type-specific, three DMRs near
the FOXR1, RGPD8 and LOC100128946 (also known as
LINC01310) genes were hypermethylated and one DMR near
the LOC390705 pseudogene was hypomethylated in cases in
all three cell fractions. These results suggest that differences in
these three DMRs are conserved across cell types. It is also
possible that DNA methylation at these DMRs regulates the
expression of genes with a similar functional role in all three
subsets.
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Fig. 3 DMRs. (a) Venn diagrams
of the numbers of DMRs detected
in different cell fractions. A DMR
is considered to be found in two
cell fractions if at least one DMC
within the DMR is found in both
cell fractions. Positive
methylation difference means the
DMR was hypermethylated in
cases, compared with controls;
negative means hypomethylated
in cases, compared with controls.
The figures were created with
BioRender. (b) Distribution of
DMRs in genomic regions in
CD4+ T cells, CD8+ T cells and
CD4−CD8− cell fractions
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DMRs were distributed across different genomic regions We
characterised DMRs with respect to genomic regions (Fig.
3b). In all three fractions, the majority of DMRs were
located in intergenic regions (47% in CD4+ T cells, 39%
in CD8+ T cells and 44% in the CD4−CD8− cell fraction).

Introns accounted for 25% and 29% in CD4+ and CD8+ T
cells, respectively, whereas approximately 20% of all
DMRs were located in promoters in both fractions.
However, in contrast to CD4+ and CD8+ T cells, the
number of DMRs in promoter regions in CD4−CD8− cell
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fractions constituted up to 30%. In total, 9–11% of DMRs
were located in exons in all three cell fractions.

The GeneHancer database was utilised to explore DMRs
in the enhancer regions. Ten, four and seven DMRs were
located in enhancer regions in CD4+ T cells, CD8+ T cells
and the CD4−CD8− cell fractions, respectively (ESM
Tables 6–8). The DMR near CBFA2T3 is a part of an
enhancer that interacts with its promoter based on the
GeneHancer database and may regulate its expression
(Fig. 4a). CBFA2T3 encodes a transcriptional repressor
and plays a role in T cell development. A variant of this
gene has been associated with autoimmune vitiligo [29].
We also found DMRs near extended promoter regions of
several genes including TOX and IL32 (Fig. 4b, c, ESM
Tables 6–8) in the CD4+ and CD8+ T cell fractions, respec-
tively. Interestingly, of the 47, 33 and 17 stand-alone
DMCs, which were not part of DMRs, 12, ten and four
were in the promoter or enhancer regions in CD4+ T cells,
CD8+ T cells and the CD4−CD8− cell fractions, respective-
ly (ESM Table 3–5).

High correlation between methylation and gene expression
highlighted candidate genes of interest The availability of
RNA-seq data from the purified cell fractions of the very same
samples allowed us to assess a possible functional impact of the
discovered DMCs on gene expression. We examined correla-
tions between DNA methylation and gene expression, utilising
our earlier published RNA-seq data [16] (ESM Tables 3–5, 9–
11). We focused on DMCs that had a high Spearman rank corre-
lation coefficient (>|0.5|) with gene expression (Table 2, Fig. 5).
For example, in CD4+ T cells, we found twoDMCs on the intron
of DGKQ positively correlated with the expression of the gene
(Table 2, Fig. 5a). Next, four DMCs on the intron of PCBP3,
which is a probable enhancer region, showed an inverse correla-
tion with its expression (Fig. 5b, Table 2). A DMC at the exon of
LOC642852 (also known as LINC00205) showed an inverse
correlation with the expression of the POFUT2 gene, which is
approximately 30 kb away from the DMC. POFUT2 encodes a
fucosyltransferase (FUT), responsible for protein O-fucosylation,
a post-translational modification process. Interestingly, a genetic
risk variant for type 1 diabetes atFUT2, another FUT of a closely
related family, was reported previously [30–32].

In CD8+ T cells, there were only two DMCs with a
Spearman rank correlation >|0.5|. The DMC on chromosome
16 in the intron of LOC100134368 had an inverse correlation
with expression of TMEM8A (also known as PGAP6), which
is approximately 2 kb away from the DMC (Fig. 5c, Table 2).
Another DMC in the exon of ADAM8 correlated inversely
with the expression of this gene (Fig. 5d, Table 2).

Further, we analysed CpG sites in our study for already
published cis-eQTM associations, using data from a Dutch
biobank of cis-eQTM effects based on 3841 whole blood
samples [24] (ESM Tables 3–5, 9–11). The expression quantita-
tive trait methylation (eQTM) effects were discovered with the
450 K DNAmethylation array, which covers approximately 5%
of CpG sites identified in our study. Among those available, we

Fig. 4 Annotations of the type 1 diabetes-associated DMRs. The
genomic loci harbouring the DMRs at CBFA2T3, IL32 and TOX were
visualised with the UCSCGenome Browser. The DMRs are shown in red
colour in the DMR track below the GeneHancer track in all of the panels.
Six other reference tracks are displayed. (a) A DMR hypermethylated in
cases vs controls (chr16:89050538–89,050,592) mapped in the intergenic
region upstream of CBFA2T3 in CD4+ T cells. It overlaps with an
enhancer region. A long-distance chromatin interaction between this
active regulatory element and CBFA2T3 promoter is shown by a
dashed line. (b) A DMR hypomethylated in cases vs controls at IL32
gene locus (chr16:3116115–3,116,616) in CD8+ T cells is located at the
promoter of the gene. (c) A DMR hypermethylated in cases vs controls in
CD4+ T cells (chr8:60032900–60,032,942) is located approximately 1 kb
upstream of TOX and overlaps with its promoter. GH Reg Elems (DE),
GeneHancer regulatory elements and gene interactions (Double Elite);
Txn Factor ChIP, Transcription factor chromatin immunoprecipitation
sequencing clusters

Table 2 DMCs across all longitudinal time points showing the highest Spearman rank correlation >|0.5| with gene expression levels

DMC (hg19) Fraction Methylation difference p value FDR Nearest gene Spearman correlation Correlating gene

chr4:961599 CD4+ 0.127 7.29×10−5 4.18×10−2 DGKQ 0.619 DGKQ

chr4:962384 CD4+ 0.136 4.66×10−5 3.25×10−2 DGKQ 0.508 DGKQ

chr21:47307692 CD4+ −0.171 1.33×10−5 1.59×10−2 PCBP3 −0.591 PCBP3

chr21:47307758 CD4+ −0.210 2.25×10−4 7.82×10−2 PCBP3 −0.537 PCBP3

chr21:47308375 CD4+ −0.244 3.46×10−4 9.76×10−2 PCBP3 −0.537 PCBP3

chr21:47308422 CD4+ −0.208 3.80×10−6 7.98×10−3 PCBP3 −0.517 PCBP3

chr21:46714810 CD4+ −0.109 2.66×10−6 6.57×10−3 LOC642852 −0.561 POFUT2

chr7:76129434 CD4+ −0.165 1.29×10−4 5.64×10−2 DTX2 −0.539 UPK3B

chr16:433855 CD8+ −0.174 1.14×10−9 1.10×10−4 LOC100134368 −0.538 TMEM8A

chr10:135092506 CD8+ −0.118 5.12×10−6 3.96×10−2 ADAM8 −0.520 ADAM8

chr4:961576 CD4−CD8− 0.164 2.01×10−6 2.65×10−2 DGKQ 0.654 DGKQ

chr4:961573 CD4−CD8− 0.119 2.37×10−5 9.88×10−2 DGKQ 0.528 DGKQ

R
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found three DMCs with known eQTM effects: chr4:81128398
near PRDM8 (cg05474265) and chr8:144808965 at FAM83H
(cg09380067) in CD4+ T cells, and chr2:73496203 at FBXO41
(cg21918313) in the CD4−CD8− cell fraction (ESM Tables 3–5,
9–11). The observed direction of expression–methylation corre-
lation in our data was in line with the eQTM effect at CpG sites
near PRDM8 and FBXO41.

Pre-seroconversion analysis revealed DNA methylation differ-
ences at a very early stage of type 1 diabetes In addition to the
differential methylation analysis of all longitudinal samples, we
analysed DNAmethylation in the samples taken before serocon-
version to identify changes that occur prior to detection of islet
autoantibodies. We refer to this analysis as pre-seroconversion

analysis. Unless specified, the differential methylation analysis
refers to the analysis where we take all the longitudinal time
points into consideration. We identified 249, 144 and 143
DMCs between cases and controls in the CD4+ T cell, CD8+ T
cell and CD4−CD8− cell fractions, respectively (FDR <0.1 and
coverage-corrected mean methylation difference >0.1) (ESM
Tables 9–11). The numbers ofDMRs between cases and controls
discovered before seroconversion were 97, 68 and 63 in the
CD4+ T cell, CD8+ T cell and CD4−CD8− cell fractions, respec-
tively (ESM Tables 12–14). Importantly, the overlay of DMRs
identified in all longitudinal samples and DMRs discovered prior
to the appearance of autoantibodies (Fig. 6a) revealed that the
majority of DMRs were pre-seroconversion-specific. We found
58, 52 and 48 pre-seroconversion-specific DMRs inCD4+T cell,
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Fig. 5 Methylation and gene expression correlation analysis. The most
highly correlated expression–methylation pairs in CD4+ and CD8+ T
cells. Spearman ρ (Spearman’s rank correlation coefficient) is between
methylation proportion (x-axis) and reads per kb per million (RPKM)-
normalised gene expression level (y-axis). (a, b) Expression–methylation
pairs in the CD4+ T cells. The methylation of CpG site chr4:961599 at an
intron of DGKQ gene positively correlated (Spearman ρ = 0.619) with
gene expression. The methylation of CpG site chr21: 47307692 at an

intron of PCBP3 gene showed negative correlation (Spearman ρ =
−0.591) with gene expression. (c, d) Expression–methylation pairs in
the CD8+ T cells. The methylation of CpG site chr16:433855 near
TMEM8A gene inversely correlated (Spearman ρ = −0.538) with gene
expression. The methylation of CpG site chr10:135092506 at an exon of
ADAM8 gene showed negative correlation (Spearman ρ = −0.520) with
gene expression. For a complete list of CpG sites and their correlation
with gene expression, please see ESM Tables 3–5, 9–11
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CD8+ T cell and CD4−CD8− cell fractions, respectively. These
DMRs were not identified in the analysis across all longitudinal
time points.

In CD4+ T cells, the most significant DMC was found at
the promoter of ARRDC2 gene and was hypomethylated in
cases vs controls (Table 3). This DMC was also one of the
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Fig. 6 DNA methylation analysis prior to seroconversion. (a) Venn
diagrams of the numbers of DMRs detected in different cell fractions
for all longitudinal samples (indicated as All) and prior to seroconversion
(indicated as Pre-sc). A DMR is considered to be found in two analyses if
at least one DMC within the DMR is found in both cell fractions.
Seroconversion was defined based on the measurements of autoanti-
bodies IAA,GADA, IA-2A and ZnT8A in the participant’s serum (details
in the Methods section). The figure was created with BioRender. (b)
UCSC Genome Browser visualisation of a DMR hypermethylated in
cases vs control participants at IRF5 gene identified in CD4+ T cells prior
to seroconversion. The genomic locus (chr7:128568936–128,609,758)
includes the DMR (chr7:128580072–128,580,230). (c) The DMR

(chr10:74082048–74,082,090) identified in this study and the DMC
(chr10:74058002, cg01674036) found in the Paul et al study [12] located
in the intergenic region between DDIT4 and DNAJB12 in CD4+ T cells
prior to seroconversion; the DMC is shown below the DMR track, and the
DMC and DMR are shown as vertical lines in respective tracks. Six other
reference tracks are displayed. Long-distance chromatin interactions
between the gene promoter and other active regulatory elements (indicat-
ed in grey colour in GeneHancer regulatory element track) are shown by
curves connecting promoters and other regulatory elements. GH Reg
Elems (DE), GeneHancer regulatory elements and gene interactions
(Double Elite); Txn Factor ChIP, Transcription factor chromatin immu-
noprecipitation sequencing clusters
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most significant findings in the analysis of all longitudinal
samples (Table 1). In CD8+ T cells, the most significant
DMC was observed at the intron of the PCBP3 gene. This
CpG site is located in the plausible enhancer region
(GeneHancer database) and may regulate the expression of
PCBP3. Furthermore, methylation–expression analysis
revealed a high correlation between methylation at PCBP3
and expression of the gene (Table 4).

Notably, in CD4+ T cells we identified hypermethylation in
case compared with control participants at the promoter of the
transcription factor IRF5 and DNAJB12 (Fig. 6b, c, ESM
Table 12).

Several DMCs were validated using pyrosequencing analysis
in a subset of samples The RRBS results were validated by
bisulphite pyrosequencing of the CD4+ and CD8+ T cells of
three case–control pairs from the same cohort. We selected
nine DMCs in CD4+ T cells and one DMC in CD8+ T cells
based on statistical significance and the consistency of
pairwise methylation difference profiles.

The direction of methylation difference was concordant
between RRBS and bisulphite pyrosequencing results for
eight out of ten selected targets (Table 5). High positive corre-
lations between RRBS and pyrosequencing results were
observed for CpG sites near ARRDC2 (chr19:18118304),
PCBP3 (chr21:47307815) and TRAF3 (chr14:81128398)
and also at the intergenic CpG site near PRDM8
(chr4:81128398) with a known eQTM effect on the gene
expression. In the CD8+ T cells, we validated the DMC near
IL32 (chr16:3116115), which was hypomethylated on the
promoter region in type 1 diabetes, compared with control
participants.

Discussion

In this study, we identified DNA methylation changes in chil-
dren developing type 1 diabetes, compared with their matched
control participants, before diabetes diagnosis and even before
the appearance of autoantibodies associated with type 1 diabe-
tes. Analysing fractionated PBMC samples allowed us to
discover immune cell subset-specific DNA methylation
changes. Importantly, DNA methylation changes were
observed in genes associated with type 1 diabetes, including
IL32, TRAF3 and DGKQ, and in novel candidate genes,
which have not been linked to the disease, such as ARRDC2
and PCBP3. Using pyrosequencing we validated the direction
of methylation difference identified by RRBS for eight out of
ten selected targets. Since the number of case individuals in
this prospective study cohort was limited (n = 7), we selected
matched control individuals to control for effects of confound-
ing factors, such as sex and place of birth. The risk of error
was further minimised by analysing several time points for
each individual. Even with these measures taken, the number
of individuals is an important limitation of this study, and the
results need to be validated in a larger cohort.

A strength of our study is the correlation of DNA methyl-
ation with gene expression from the purified cell type of the
very same samples from our earlier report [16], which enabled
us to highlight candidate genes whose expression might be
influenced by differential methylation. For instance, an intron
of PCBP3 had a locus hypomethylated in cases in CD4+ T
cells across all time points and in CD8+ T cells before sero-
conversion, and it had an inverse correlation with the gene
expression. RNA binding proteins of the poly(rC) binding
protein (PCBP) family are important in regulating gene

Table 3 Top-ranked DMCs at FDR <0.0001 identified between cases and controls prior to seroconversion

DMC (hg19) Fraction Methylation difference p value FDR, <0.0001 Nearest gene Genomic region

chr19:18118304 CD4+ −0.185 4.22×10−22 1.64×10−16 ARRDC2 Promoter

chr7:3169658 CD4+ 0.269 4.76×10−13 4.62×10−8 BC038729 Intergenic

chr10:99209697 CD4+ 0.541 1.95×10−12 1.52×10−7 ZDHHC16 Intron

chr14:65542789 CD4+ −0.505 7.00×10−12 3.88×10−7 LOC100506321 Intron

chr8:530556 CD4+ −0.171 1.00×10−11 4.87×10−7 TDRP Intergenic

chr21:47285711 CD8+ −0.124 9.16×10−22 4.78×10−16 PCBP3 Intron

chr17:71322457 CD8+ −0.113 1.92×10−11 2.28×10−6 CDC42EP4 Intergenic

chr19:12035022 CD8+ −0.150 3.10×10−10 2.31×10−5 ZNF700 Promoter

chr7:3169674 CD8+ −0.174 3.00×10−10 2.31×10−5 BC038729 Intergenic

chr14:45343058 CD8+ 0.189 6.22×10−10 4.33×10−5 C14orf28 Intergenic

chr11:134709660 CD4−CD8− 0.228 5.41×10−17 4.72×10−11 AK125040 Intergenic

chr2:113192534 CD4−CD8− 0.132 6.45×10−13 1.87×10−7 RGPD8 Promoter

chr8:144788521 CD4−CD8− 0.18 1.09×10−12 2.37×10−7 CCDC166 Intron

chr3:194706028 CD4−CD8− −0.135 9.52×10−12 1.38×10−6 XXYLT1 Intergenic

chr6:163570666 CD4−CD8− −0.219 5.53×10−10 4.25×10−5 AK296276 Intron
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expression at the post-transcriptional level. Further, another
locus at the promoter of IL32 was also hypomethylated in
cases compared with controls in the analysis of all longitudi-
nal samples in CD8+ T cells. Methylation–expression analysis
showed a weak inverse correlation between IL32 mRNA

expression and promoter methylation, suggesting that epige-
netic changes at the promoter of IL32 lead to a higher expres-
sion of this cytokine. Interestingly, IL-32 was significantly
upregulated at the mRNA level in cases compared with
controls in this cohort. IL-32, a proinflammatory cytokine,

Table 4 DMCs in the analysis of only pre-seroconversion samples showing the highest Spearman rank correlation >|0.5| with gene expression levels

DMC (hg19) Fraction Methylation difference p value FDR Nearest gene Spearman correlation Correlating gene

chr2:1817466 CD4+ 0.269 1.88×10−4 8.42×10−2 MYT1L −0.695 PXDN

chr2:1817753 CD4+ 0.174 9.85×10−5 6.05×10−2 MYT1L −0.629 PXDN

chr16:452426 CD4+ −0.124 7.79×10−7 3.36×10−3 DECR2 −0.623 LA16c-OS12.2

chr8:144659988 CD4+ 0.104 1.43×10−4 7.35×10−2 NAPRT1 −0.600 NAPRT1

chr11:67351952 CD4+ −0.104 1.92×10−5 2.53×10−2 GSTP1 −0.567 GSTP1

chr5:179193600 CD4+ −0.197 4.95×10−5 4.17×10−2 LTC4S −0.548 RUFY1

chr19:37807762 CD4+ 0.138 1.49×10−5 2.17×10−2 HKR1 −0.540 ZNF527

chr7:76129273 CD4+ −0.174 3.28×10−5 3.34×10−2 DTX2 −0.536 UPK3B

chr2:131695535 CD4+ −0.214 6.79×10−5 5.00×10−2 ARHGEF4 0.600 FAM168B

chr4:961405 CD4+ 0.325 1.29×10−6 4.84×10−3 DGKQ 0.504 DGKQ

chr8:144660722 CD8+ 0.142 2.53×10−6 1.87×10−2 NAPRT1 −0.543 NAPRT1

chr21:47307825 CD8+ −0.142 5.84×10−5 9.98×10−2 PCBP3 −0.534 PCBP3

chr21:47285711 CD8+ −0.427 9.16×10−22 4.78×10−16 PCBP3 −0.512 PCBP3

chr21:47307753 CD8+ −0.129 6.48×10−9 3.38×10−4 PCBP3 −0.501 PCBP3

chr17:71322457 CD8+ 0.548 1.92×10−11 2.28×10−6 CDC42EP4 0.516 SLC39A11

chr11:65359968 CD4−CD8− −0.320 6.92×10−9 3.14×10−4 KCNK7 −0.545 LTBP3

chr16:1480869 CD4−CD8− 0.135 7.38×10−6 3.04×10−2 C16orf91 0.611 TSR3

chr1:3811367 CD4−CD8− 0.238 9.27×10−10 5.77×10−5 C1orf174 0.558 DFFB

chr19:50962487 CD4−CD8− 0.121 5.31×10−5 9.00×10−2 EMC10 0.527 KCNC3

chr19:1047251 CD4−CD8− 0.171 4.93×10−5 8.68×10−2 ABCA7 0.501 ATP5D

Table 5 Validation of the RRBS results by bisulphite pyrosequencing

Selected targets for validation Validation results

DMC (hg19) Nearest
gene

Methylation
difference

p value FDR Fraction Concordant direction of
difference

Correlation p
value

FDR

chr19:18118304 ARRDC2 −0.174 1.11×10−9 1.94×10−5 CD4+ Yes 0.85 0.03 0.15

chr21:47307815 PCBP3 −0.207 7.69×10−8 6.48×10−4 CD4+ Yes 0.86 0.03 0.15

chr14:103227394 TRAF3 −0.15 5.86×10−10 1.24×10−5 CD4+ Yes 0.82 0.05 0.15

chr4:81128398 PRDM8 −0.143 4.71×10−6 8.92×10−3 CD4+ Yes 0.71 0.11 0.23

chr1:228659024 Histone3 0.147 3.33×10−8 3.40×10−4 CD4+ Yes 0.74 0.09 0.23

chr16:3116115 IL32 −0.141 1.68×10−7 3.82×10−3 CD8+ Yes 0.14 0.79 0.79

chr22:39633525 PDGFB 0.189 1.77×10−9 2.61×10−5 CD4+ Yes 0.62 0.19 0.32

chr8:60032942 TOX 0.113 3.20×10−5 2.63×10−2 CD4+ Yes 0.25 0.63 0.70

chr18:77398359 CTDP1 0.144 2.46×10−7 1.26×10−3 CD4+ No 0.46 0.36 0.49

chr2:113192477 RGPD8 0.13 8.45×10−13 1.25×10−7 CD4+ No 0.43 0.39 0.49

The first six columns contain information about selected targets. In column 7 we indicate whether the methylation difference between the cases and
controls was concordant (to the same direction) in the pyrosequencing results compared with RRBS results. Column 8 contains the Pearson correlation
coefficient between pyrosequencing and RRBS results (methylation proportions of the six samples that were pyrosequenced). Columns 9 and 10 contain
raw and adjusted p values (FDR), respectively
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was shown to be upregulated at either mRNA or protein level
in several autoimmune disorders [33]; however, the precise
role of this cytokine remains to be elucidated.

Next, we observed hypermethylation in cases vs controls at a
locus near DGKQ, which correlated positively with the expres-
sion of this gene in CD4+ T cells and CD4−CD8− cell fractions.
This finding suggests that the differential methylation atDGKQ
may result in its higher expression in type 1 diabetes cases. This
observation is in line with the results of the transcriptomic anal-
ysis of CD4+ T cells from the same cohort [16]. Diacylglycerol
kinase theta (DGKQ) is a member of a family of diacylglycerol
(DAG) kinases, which have critical roles in T cell receptor
(TCR) signalling [34]. The kinase inversely regulate T cell
activation, by terminating DAG-mediating signalling [35].
Interestingly, a recent integrative analysis of genetic associa-
tion, functional genomics data and protein–protein networks
identified DGKQ as a potential novel type 1 diabetes therapeu-
tic gene target along with other novel and known targets, e.g.,
IL2RA, IL6ST, IL6R and TYK2 [3].

The type 1 interferon transcriptional signature is associated
with the development of type 1 diabetes [36, 37]. In CD4+ T
cells of pre-seroconversion samples, we observed hypermethy-
lation at the promoter of IRF5 (Fig. 6b, ESM Table 12). This
DMR is located in the vicinity (less than 7 kb) of multiple SNPs
that were previously associated with RA [38, 39], systemic
lupus erythematosus (SLE) [40, 41] and IBD [42]. This finding
suggests that the transcription factor may have a role at the very
early stages of islet autoimmunity. Further, in CD8+ T cells, we
found hypermethylation at an exon of IRF1 gene (ESM
Table 7). Interferon regulatory factor 1 (IRF1) is important in
the host immune response to pathogens and CD8+ T cell matu-
ration [43]. Further, we found hypomethylated DMRs at
TRAF3 in CD4+ T cells and CD4−CD8− cell fractions.
TRAF3 is also critical in regulation of type 1 interferon produc-
tion and plays a role in antiviral immune response [44]. In
CD4+ T cells, hypomethylation at TRAF3 had moderate posi-
tive correlation with the gene expression (Spearman ρ =
0.334), which might result in lower gene expression in cases
vs controls. TNF receptor-associated factor 3 (TRAF3) was
shown to be recruited in the TCR/CD28 signalling complex
in murine CD4+ T cells and critical for T cell-mediated immu-
nity to infection [45].

Thymocyte selection-associated high mobility group box
protein (TOX) is a key transcriptional regulator indispensable
for CD4+ T cell development in the thymus [46]. In addition, it
drives epigenetic remodelling of CD8+ T cells towards an
exhausted phenotype in chronic infections [47, 48]. Notably,
in the CD4+ T cells, we identified a hypermethylation in cases
at the intergenic region near the TSS of the TOX gene. The
methylation at this region had a weak negative correlation
(−0.157) with gene expression, suggesting that hypermethy-
lation of this locus in cases may favour T cell differentiation
towards an effector phenotype in type 1 diabetes patients. It

was reported that autoreactive CD8+ T cells with an
exhaustion-like profile associated with slow type 1 diabetes
progression [49] and preservation of beta cell function in type
1 diabetes patients [50]. Further, genetic variants at TOX are
among novel risk loci for type 1 diabetes [51].

Our recent study aimed at identifying umbilical cord blood
DNAmethylation associated with type 1 diabetes progression
[19], as well as a previous study by another group [12], did not
find any difference in DNA methylation, suggesting that
significant DNA methylation differences in children
progressing to the disease are not yet present at birth or that
they are too subtle to be identified with the current methods
and cohort size.

A recent study by Johnson et al examined DNA methyla-
tion changes in blood samples longitudinally collected before
diagnosis of type 1 diabetes from children enrolled in the
prospective DAISY cohort using Illumina 450 K and EPIC
platforms [14]. They observed 28 DMRs associated with later
development of the disease. We found no overlap with the
CpG sites identified in the study by Johnson et al. This may
perhaps be due to different methodologies and to the fact that
Johnson et al analysed peripheral whole blood samples,
whereas we examined DNA methylation in purified cell frac-
tions of PBMCs. Despite these differences, both studies iden-
tified pre-seroconversion changes in DNA methylation,
suggesting that these may predict disease progression before
the appearance of autoantibodies. However, more studies are
needed to validate the findings in independent, larger cohorts,
with replication in other populations.

Interestingly, Paul et al [12] identified one DMC (hg19:
chr10:74058002) in purified CD4+ T cells between individ-
uals with type 1 diabetes and their healthy co-twins in the
intergenic region between DDIT4 and DNAJB12. In our
study, we found a DMR (chr10:74082048-–74,082,090)
region hypermethylated in cases in CD4+ T cells in pre-
seroconverted samples located in the same intergenic region
(Fig. 6c).

In conclusion, our results provide novel insights into
cell type-specific DNA methylation changes associated
with type 1 diabetes development. These findings provide
the basis for further studies to find an early methylation
signature, which may be useful for disease prediction and
management.

Supplementary Information The online version contains peer-reviewed
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