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Abstract: The enantiomers of aromatic 4-dibenzocyclooctynol (DIBO), used for radiolabeling and
subsequent conjugation of biomolecules to form radioligands for positron emission tomography
(PET), were separated by kinetic resolution using lipase A from Candida antarctica (CAL-A). In
optimized conditions, (R)-DIBO [(R)-1, ee 95%] and its acetylated (S)-ester [(S)-2, ee 96%] were
isolated. In silico docking results explained the ability of CAL-A to differentiate the enantiomers
of DIBO and to accommodate various acyl donors. Anhydrous MgCl2 was used for binding water
from the reaction medium and, thus, for obtaining higher conversion by preventing hydrolysis of the
product (S)-2 into the starting material. Since the presence of hydrated MgCl2·6H2O also allowed
high conversion or effect on enantioselectivity, Mg2+ ion was suspected to interact with the enzyme.
Binding site predictions indicated at least two sites of interest; one in the lid domain at the bottom of
the acyl binding pocket and another at the interface of the hydrolase and flap domains, just above the
active site.

Keywords: biocatalysis; lipase A from Candida antarctica; DIBO; kinetic resolution; molecular modeling

1. Introduction

Positron emission tomography (PET) imaging provides a method for observing metabolic processes
and biological macromolecules in living organisms and, accordingly, an opportunity to diagnose
various human diseases. To provide efficient and specific target binding, oligonucleotides, peptides,
or antibodies are often coupled to radionuclides with a linker to form radiopharmaceuticals [1,2].
11,12-Didehydro-5,6-dihydrodibenzo[a,e]cyclooctyn-5-ol (DIBO, Scheme 1), most commonly called
4-dibenzocyclooctynol in the literature, is used for conjugation of biomolecules and radiolabels
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(Scheme 1) [3]. Racemic DIBO has previously been used as a component of an antibody-based
imaging agent that targets a biomarker of pancreatic cancer, CA19.9 [4]. Similarly, to non-radioactive
pharmaceuticals, high enantiopurity is desirable in radiopharmaceuticals since enantiopure compounds
typically improve safety and efficacy [5]. DIBO, however, poses a challenge for any asymmetric
catalyst, since it contains two similar-sized bulky structural moieties adjacent to its asymmetric center,
making its enantiomeric recognition very difficult. Furthermore, two fused benzene rings with a
cyclooctyne ring makes DIBO highly strained and, therefore, the enantiomers of DIBO have so far
remained unseparated. Among the few known enzymes acting on this type of substrates, lipase A from
Candida antarctica (CAL-A) is known to accept bulky secondary alcohols [6,7] and similar amines [8,9].
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CAL-A is structurally unique, representing a novel structural family of lipases [10]. It has a
catalytic triad consisting of three amino acid residues, S184, D334, and H366, a well-defined lid domain
(residues 217–308) as well as a classical α/β-hydrolase domain. In addition to the lid, CAL-A has
a separate flap domain (residues 425–441) surrounding the nucleophile binding site. [11] During
interfacial activation, the flap swings out, exposing the active site. As a result, the available space
on the nucleophile binding site becomes practically infinite, which explains the ability of CAL-A to
accept sterically hindered substrates, even tertiary alcohols [12,13] and secondary amines [14,15], i.e.,
substrates that are seldom accepted by other lipases.

We investigated the ability of lipases and especially CAL-A to separate the enantiomers of DIBO
using detailed enzyme-substrate interaction analysis through in silico docking. Additionally, even
though CAL-A is not a metalloenzyme [10], Mg2+ was suspected to interact with CAL-A and potential
binding sites for Mg2+ were predicted. Finally, enantiomers of DIBO were successfully separated by
CAL-A-catalyzed resolution and their absolute configurations were determined with X-ray diffraction
(XRD) analysis.

2. Results and Discussion

Selection of enzyme and solvent: Altogether, 18 hydrolases, mostly lipases (listed in the Materials
and Methods section), were screened for the O-acylation of DIBO (rac-1; 5.0 mM) with vinyl acetate
(150 mM; R1 = Me, R2 = CH=CH2; Scheme 1) in methyl tert-butyl ether (MTBE). The preliminary
reaction conditions were based on our earlier works and optimization studies with CAL-A [6,8]. Most
of the evaluated hydrolases did not accept DIBO as a substrate. Only one lipase, CAT#NZL-101-IMB
(herein CAL-A), provided the reaction with high enantiomeric ratio (E) of 130 and 49% conversion in
96 h. MTBE emerged as the best out of nine tested solvents as described in Supplementary Materials.

2.1. Enantiorecognition of DIBO by CAL-A

CAL-A-catalyzed O-acylation follows the ping-pong bi-bi mechanism, taking place in four
primary steps (I-IV in Scheme 2). In steps I and II, S184 of CAL-A (A) reacts with an acyl donor
giving the acyl-enzyme intermediate, Ser-OCOR2 (C), through formation of the first tetrahedral
anionic intermediate (B). In step III, DIBO attacks the acyl-enzyme intermediate, leading to the second
tetrahedral intermediate (D) and further release of the product (S)-2. To explain the ability of CAL-A
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to differentiate the enantiomers of DIBO, (R)- and (S)-2 (R1 = Me) mimicking intermediate D, were
docked to the active site of CAL-A (Figure 1). The presented results represent the best poses taking into
account that, for productive binding and stabilization of the reaction intermediates, the ester carbonyl
oxygen has to be within hydrogen bonding distance to the OH-group of D95 and the NH-group of
G185, which together form the oxyanion hole. Moreover, the other ester oxygen has to be within
hydrogen bonding distance to the catalytic H366 that works in pair with D334 [10]. (S)-2 was shown to
bind effectively and form a tight interaction network of hydrogen bonds. With (R)-2, by contrast, the
long distance to the catalytic H366 (4.6 Å) makes H366 unlikely to abstract the proton and form the
reaction intermediate D (Scheme 2), if the carbonyl oxygen is within hydrogen bonding distance to the
residues in the oxyanion hole. Furthermore, the carbonyl oxygen of (R)-2 slightly turns away from the
oxyanion hole, thereby restricting the formation of a productive complex for catalysis. Several polar
residues within 4 Å of the acetyl group are also contributing to the destabilizing effect on the complex
formation. Consequently, it is unlikely that CAL-A can form a productive reaction complex with (R)-2
and, hence, is highly stereoselective for the S enantiomer of DIBO.
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Figure 1. (R)- and (S)-2 (R1 = Me) docked to the active site of CAL-A. (S)-2 (R1 = Me) (yellow) likely
binds to the active site of CAL-A by forming a tight interaction network of hydrogen bonds to the
oxyanion hole and the catalytic residues. However, if the carbonyl oxygen of (R)-2 (R1 = Me) (grey) is
within hydrogen bonding distance to the oxyanion hole, the catalytic H366 is too far away from the
other oxygen (4.6 Å) to be able to abstract the proton and form the reaction intermediate D (Scheme 2).
Consequently, it is unlikely that CAL-A can form a productive reaction complex with (R)-2 (R1 = Me).
2D structures of (S)- and (R)-2 (R1 = Me) are shown to the right.
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2.2. In Silico Docking of Acyl Donors

To accommodate an acyl donor, CAL-A has a narrow and hydrophobic acyl binding pocket
extending into its lid domain, while the active site itself is covered by a flap that moves away during
interfacial activation to expose the binding pocket. The pocket is able to accommodate acyl residues
with an approximate maximum of 20–25 methylene units [10]. It has been shown that the commercially
available CAL-A-preparation contains also a truncated enzyme variant lacking the active-site flap.
Both forms of CAL-A have been shown to be catalytically active and catalyze the acylation of alcohols
similarly with the same enantioselectivity [11]. This provides, accordingly, a good basis for the
docking simulations where the flap region of CAL-A was removed to mimic the active conformation.
This conformation was able to accommodate all acyl donors in the docking simulations (Figure 2A).
The examined acyl donors were isopropenyl acetate, vinyl acetate, ethyl acetate, vinyl butanoate,
trifluoroethyl butanoate, vinyl laurate, and ethyl methoxyacetate. To analyze the interactions of these
acyl donors with CAL-A, the donors were covalently docked to the catalytic S184 (intermediate B in
Scheme 2) and the chosen poses represent complexes where the requirements for productive binding
and stabilization of the reaction intermediates listed above are satisfied.

The docked poses of both isopropenyl acetate (Figure 2B) and vinyl acetate (Figure 2C) to the
CAL-A active site indicate that they can form the crucial hydrogen bonding network described above,
which is essential for enzymatic activity. In addition, their interactions with CAL-A are mainly formed
with the active site, without additional interactions with the acyl binding pocket, except for I336 at the
entrance of the pocket. This explains the excellent reactivity seen in the experimental results (Table 1,
entries 1 and 2). As an exception among acetates (entries 1-3), the reactions were slow with ethyl
acetate (entry 3), as also previously observed [16]. Compared to vinyl and isopropenyl acetates, ethyl
acetate involves a weaker leaving group and is a less activated ester as well [17]. This likely causes the
slow reaction, since the docked pose of ethyl acetate is identical to the one for vinyl acetate (Figure 2C),
and addition of isopropenyl acetate into reaction mixture resulted in a rapid formation of the acetate
(S)-2.

Table 1. CAL-A-catalyzed (NZL-101-IMB; 60 mg/mL) O-acylation of rac-1 (5.0 mM) with various acyl
donors (150 mM) (t = 96 h).

Entry Acyl Donor R1 R2 ees (%) eep (%) c (%) E a)

1 Isopropenyl acetate Me C(CH3)=CH2 98 96 51 240
2 Vinyl acetate Me CH=CH2 91 95 49 130
3 Ethyl acetate Me Et 7 >99 7 -b)

4 Vinyl butanoate Pr CH=CH2 18 98 15 90
5 Trifluoroethyl butanoate Pr CH2CF3 19 >99 16 >200
6 Vinyl laurate CH3(CH2)10 CH=CH2 8 96 7 -b)

7 Ethyl methoxyacetate MeOCH2 Et 0 - 0 -
a) Enantiomeric ratio. b) E not determined because of the early stage of the reaction.
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Figure 2. Predicted binding modes of the investigated acyl donors. (A) The flap region (residues
D425–P441) was removed from the structure of CAL-A (PDB ID: 3GUU [18]) to mimic the interfacially
activated substrate-binding conformation with the catalytic amino acids and amino acids forming the
oxyanion hole exposed (shown as sticks). CAL-A also has an acyl binding pocket extending from the
active site into the lid domain (gray surface). The catalytic amino acids and the oxyanion hole are
shown as sticks in dark turquoise, their hydrogen bonds (with distances) to the ligands in gray dashes,
amino acids within 4 Å of the ligands as gray sticks, and the acyl binding pocket as a gray surface to
show the positioning of the ligand in relation to it. Predicted binding modes of (B) isopropenyl acetate
(dark green sticks), (C) vinyl acetate (pink sticks), (D) vinyl butanoate (wheat sticks), (E) trifluoroethyl
butanoate (two possible binding modes represented in light and dark pink sticks), (F) vinyl laurate
(orange sticks), and (G) ethyl methoxyacetate (light purple). 2D structures of the acyl donors are
included as inserts.

Interestingly, the reactions with vinyl and trifluoroethyl butanoate tended to stop at ca. 15%
conversion in MTBE (entries 4 and 5). A similar phenomenon was seen in the reaction of long-chain
vinyl laurate, where the reaction stopped at 7% conversion (entry 6). Inhibition was the most plausible
explanation and it was verified by adding isopropenyl acetate into the retarded reactions. Because
the transformation from rac-1 into its acetate product occurred only at negligible rate, it could be
interpreted that the enzyme activity had been decreased by inhibition. The docking results of vinyl
butanoate, trifluoroethyl butanoate, and vinyl laurate are presented in Figure 2D–F. Contrary to
isopropenyl and vinyl acetates, these acyl donors also interact with the acyl binding pocket of CAL-A.
They form hydrophobic interactions with several residues: F233, I336, and V337 (vinyl butanoate);
F233 and I336 (trifluoroethyl butanoate); and F149, A218, T221, L225, F233, A234, and I336 (vinyl
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laurate). Moreover, the binding predictions of trifluoroethyl butanoate (Figure 2E) resulted in two
equally possible conformations; one with the trifluoroethyl group pointing towards the solvent and
another with this group pointing towards the acyl binding pocket. Either of these conformations
would enable interactions with the acyl binding pocket.

However, hydrophobic interactions between acyl donors and CAL-A are unlikely to fully explain
the observed inhibition since butanoates have successfully been used in many kinetic resolutions [6,8],
inhibition being reported in only one paper [19]. This indicates that the substrate, DIBO, must
participate in the inhibition. The second tetrahedral intermediate (D) formed in step III (Scheme 2)
was considered a likely inhibitor of the enzyme. Docking simulations were performed to compare
the binding properties of acetylated DIBO ((S)-2, R1 = Me, Figure 3A) and butanoylated DIBO ((S)-2,
R1 = Pr, Figure 3B). In these, intermediate D (R1 = Me) was found to bind to the catalytic amino acids
and to the amino acids in the oxyanion hole through a binding mode that satisfies all requirements
for productive binding and stabilization of the reaction intermediate. Besides these hydrogen bonds,
intermediate D (R1 = Me) does not reach the acyl binding pocket of CAL-A and makes no additional
interactions with the hydrophobic amino acids lining this pocket. Similarly, intermediate D (R1 = Pr)
satisfies the same hydrogen bond requirements to the catalytic amino acids and to the amino acids of
the oxyanion hole. Most importantly, the hydrocarbon chain of the propyl group is long enough to
form hydrophobic interactions with F233 and I336 at the entrance of the acyl binding pocket. These
interactions likely increase binding affinity and attenuate product release, leading to enzyme inhibition.
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Figure 3. Predicted binding mode of DIBO to CAL-A. The docked complexes represent the second
acyl-enzyme intermediates (D, Scheme 2) and indicate that both acetylated (yellow sticks, (A)) and
butanoylated DIBO (green sticks, (B)) can bind to the catalytic amino acids and the amino acids of
the oxyanion hole (dark turquoise sticks). However, besides these hydrogen bonds, butanoylated
DIBO can interact with residues F233 and I336 (gray sticks), which are located within 4 Å distance
from the hydrocarbon chain of the propyl group. These hydrophobic interactions likely increase the
binding affinity, causing the slower release of the product. 2D structures of the two DIBO structures are
included as inserts.

Finally, with the last investigated acyl donor, ethyl methoxyacetate, no reaction was detected
(entry 7, Table 1). In this case, inhibition was not present since addition of isopropenyl acetate
into the reaction mixture (c = 0%) gave 41% of (S)-2 (R1 = Me) after the subsequent 96 h. Hence,
ethyl methoxyacetate was not accepted as a substrate for CAL-A. The docking results for ethyl
methoxyacetate show poses that remain on the surface of the enzyme without forming interactions
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inside the acyl binding pocket (Figure 2G). This is likely due to the hydrophilicity of the molecule,
which makes it unlikely to bind to CAL-A since, contrary to the other acyl donors, the acyl binding
pocket repels the hydrophilic chain, leaving a part of the molecule exposed to the solvent. Even though
the smaller acyl donors do not interact with the acyl binding pocket because of the short chain, they
differ from ethyl methoxyacetate as the whole molecule can be accommodated and stabilized in the
active site. This is in line with the experimental results, showing no reaction with this acyl donor.

2.3. Effect of Drying Agents and Magnesium Ions

As a distinct feature of the CAL-A-catalyzed O-acylation of DIBO, ees increased very slowly after
24 h. With isopropenyl acetate, increase was smooth (entries 1 and 2, Table 2), whereas with vinyl
acetate, ees did not increase after reaching 91% (entry 7). The presence of water, allowing hydrolysis
of (S)-2 (R1 = Me), is the most common reason for this [9]. Accordingly, even though hydrolysis of
the formed reaction product is a common problem in enzymatic O-acylations, a certain amount of
water is necessary for the proper functioning of the enzyme. The resolution reaction, however, does
not produce water into the reaction medium, but possible sources of water include the reactants,
the solvent, the catalyst and the atmosphere. To maintain an optimal water content in the reaction
medium, molecular sieves [20] and pairs of salts, as the anhydrous and hydrated forms [21], have
been successfully used. In this study, molecular sieves and anhydrous Mg2+ salts were added into the
reaction mixtures to bind water and to prevent the hydrolysis of (S)-2 (R1 = Me) into (S)-1.

Table 2. CAL-A-catalyzed (NZL-101-IMB; 60 mg/mL) acylation of rac-1 (5.0 mM) with isopropenyl
acetate (150 mM) in methyl tert-butyl ether (MTBE) in the presence of various additives (80 mg/mL).

Entry Acyl Donor Additives t (h) ees (%) eep (%) c (%) E

1 Isopropenyl acetate none 24 90 97 48 240
2 Isopropenyl acetate none 96 98 96 51 240
3 Isopropenyl acetate 3 Å molecular sieves a) 24 97 94 51 185
4 Isopropenyl acetate MgSO4 (anh.) 24 95 96 50 185
5 Isopropenyl acetate MgCl2 (anh.) 24 93 97 49 210
6 Isopropenyl acetate MgCl2·6H2O 24 86 99 47 355
7 Vinyl acetate none 96 91 95 49 130
8 Vinyl acetate MgCl2 (anh.) 24 96 93 51 95
9 Vinyl acetate MgCl2·6H2O 24 96 95 50 135

a) 30 pieces, ca. 170 mg.

In the presence of isopropenyl acetate, these drying agents, with only minor effects on
enantioselectivity, enabled reaching 93–97% ees in 24 h, in contrast to 90% ees in their absence
(entries 1, 3–5, Table 2). With vinyl acetate, use of anhydrous MgCl2 clearly enabled the reaction to
proceed further, where 96% ees was reached in 24 h (entries 7 and 8).

Surprisingly, the hydrated salt MgCl2·6H2O also had a strong impact on the reaction. MgCl2·6H2O
already contains a maximum number of water molecules and is thus unable to bind water from the
reaction medium. Therefore, the differences detected in the reaction rates or enantioselectivities suggest
some other explanation than binding of water from the reaction medium. With vinyl acetate, 96% ees

was reached in 24 h also in the presence of MgCl2·6H2O (entry 9), whereas in its absence, increase in
ees tended to stop at 91% (entry 7). With isopropenyl acetate, the reaction rate just slightly decreased,
whereas enantioselectivity increased from 240 to 355 as expressed by the E-values (entries 1 and 6).

One of the available CAL-A structures (Protein Data Bank PDB ID: 2VEO [10]) contains two
uranium atoms (U4+); one bound to the lid at the bottom of the acyl binding pocket (coordinated
by D292 and E298) and another bound to the interface between the lid and the hydrolase domain
(coordinated by D220 and E314). In accordance with our experimental results showing that Mg2+ has
positive effects on the reaction rate and enantioselectivity, a prediction of Mg2+ binding sites in CAL-A
(PDB ID: 3GUU [18]) shows that D292 and E298 in the lid also form a potential binding site for this
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metal (Figure 4). This is in line with the observations of Lu et al., who reported that Mg2+ preferentially
binds to amino acid residues D and E, and that the preferred atom types surrounding the metal ion are
side chain oxygens [22]. In the lid domain, this corresponds well with the predicted D292, E298, and
the surrounding N291, T293, and N294. Another potential site of interest is next to D334 and H366
in the active site. E335 and E365 could coordinate the Mg2+ ion and the nearby T368 can contribute
to a favorable Mg2+ binding environment with its side chain oxygen. Interestingly, this site is at the
interface between the hydrolase domain and the flap, which moves away to open the active site during
interfacial activation. Thus, it can be speculated that a potential Mg2+ binding site in this region could
have an effect on the reaction rate by modulating the movement of the flap and, consequently, affect
the enzyme activation and the reaction rate.
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2.4. Separation of the Enantiomers and Determination of the Absolute Configurations

Finally, to separate the enantiomers of rac-1 (DIBO), the use of MgCl2·6H2O with isopropenyl
acetate seemed promising (E = 355), but the reaction proceeded slowly due to the presence of water, not
reaching 96% ees until after 96 h. Anhydrous MgCl2 provided a higher reaction rate, 49% conversion
and E of 210 (entry 5 in Table 2) in 24 h. To take advantage of the high enantioselectivity achieved
with MgCl2·6H2O (entry 6), mixing of anhydrous and hydrated MgCl2 (1:1, w/w) led to a satisfactory
compromise (ees = 91% and E = 230, t = 24 h). These conditions were then chosen for the preparative
scale reaction where (R)-1 (ees 95%) and (S)-2 (R1 = Me; eep 96%) were isolated.

The single crystal X-ray crystal structures (see Supplementary Materials) of (R)-1 and (S)-2 are
shown in Figure 5. The absolute configuration of 1 at sp3 HC*OH carbon was confirmed to be (R) with
the Flack parameter value of −0.04(9) [23,24]. Although the Flack parameter for 1, containing only
one oxygen atom, had a value close to zero, the estimated standard deviation (esd) was too high for
the result to be considered statistically reliable. Therefore, a single crystal of compound 2, containing
an ester group instead OH, was examined. The two oxygen atoms resulted in larger anomalous
scattering than (R)-1, and the Flack parameter had a value of 0.08(4). As expected, 2 had the opposite
(S)-configuration at sp3 HC*OOCCH3. The absolute configurations of 1 and 2, defined as R and S,
respectively, are in accordance with the molecular modeling estimations described in Figure 1.
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3. Materials and Methods

3.1. General Information

The enzymes screened for the O-acylation of DIBO (rac-1): four different preparations of lipase
A from Candida antarctica: NZL-101-IMB (BioCatalytics), Immozyme CALA-T2-150 (ChiralVision),
VZ-1031-3 (Viazym), and CAL-A (20%) on Celite [15]. Lipase B from Candida antarctica (Novozym 435,
Novozymes), lipase from Burkholderia cepacia (20% on Celite [15], Amano), Rhizomucor miehei (Lipozyme
RM IM, Novozymes and Immozyme IMMRML-T2-150, ChiralVision), Thermomyces lanuginosus
(Lipozyme TL IM, Novozymes and NZL-105-LYO, Biocatalytics), Pseudomonas fluorescens (ChiralVision),
Rhizopus oryzae (ChiralVision), Candida rugosa (ChiralVision), porcine pancreas (Sigma), and Penicillium
roquefortii (20% on Celite) [15]. Acylase I from Aspergillus (Fluka), alcalase from Bacillus licheniformis
(Sigma, Steinheim, Germany), and esterase from porcine liver (Fluka). Accordingly, three enzymes
were immobilized by adsorption on Celite [15]. All other enzymes were commercially available in
immobilized form, or they were used as such without immobilization.

The substrate rac-1 (1027338-06-2, ≥95%) was acquired from WuXi AppTec. MTBE, DIPE,
2-methyltetrahydrofuran, acetonitrile, diethyl ether, toluene, hexane, and propan-2-ol were purchased
from Sigma-Aldrich. 1,2-Dimethoxyethane, vinyl acetate, isopropenyl acetate, vinyl butanoate, and
ethyl methoxyacetate were products of Aldrich. 2-methylbutan-2-ol and vinyl laurate were obtained
from Fluka and petroleum ether from J.T.Baker. 2,2,2-Trifluoroethyl butanoate was prepared from
butanoyl chloride and trifluoroethanol. Solvents and acyl donors were dried with molecular sieves
(3Å, Sigma-Aldrich) to minimize their water content. Salts used in the enzymatic reactions were
anhydrous MgCl2, MgCl2·6H2O (both from Merck, Darmstadt, Germany), and MgSO4 (J.T.Baker,
Deventer, Holland).

3.2. Instrumentation

Enzymatic reactions were monitored with an Agilent 1100 HPLC-UV (λ = 305 nm) instrument
equipped with a Chiralcel® OD-H column (4.6 × 250 mm, 5 µm, Chiral Technologies Europe, Illkirch,
France). A detailed description of the procedure is available in the Supplementary Materials.

NMR spectra were determined using a Bruker 500 MHz AVANCE III NMR spectrometer (Bruker,
Rheinstetten, Germany). The solvent was CDCl3. The observed 1H and 13C NMR spectra are reported
in Supplementary Materials.

Single-crystal X-ray data were acquired using a Rigaku SuperNova dual-source Oxford
diffractometer equipped with an Atlas detector (Agilent XRD, Oxford, United Kingdom), using
mirror-monochromated Cu-Kα (λ = 1.54184 Å) radiation.

Exact masses were measured with a Bruker Daltonics micrOTOF high-resolution mass spectrometer
(Bruker, Bremen, Germany).
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3.3. Analytical Scale Reactions

In a typical analytical scale reaction, rac-1 (5.0 mmol/L) in a solvent (1.00 mL) was pipetted into the
reaction vial containing the enzyme preparation (60 mg/mL). The reaction was started by adding the
acyl donor (150 mM). Lipase-catalyzed reactions were carried out at room temperature and ambient
pressure. A reciprocating platform shaker (Heidolph Promax 2020, speed 170 1/min) was used to mix
the solution. Samples (0,1 mL) were taken at intervals by filtering off the enzyme. Conversions of
the reactions were determined with HPLC analyses (Agilent, Santa Clara, USA). Determination of
enantiomeric ratio (E) was based on the equation E = {ln[(1 − c)(1 − ees)]/ln[(1 − c)(1 + ees)]}, which
relates the conversion of the racemic substrate (c) and enantiomeric excess of the substrate and the
product, where c = eeS/(eeS+eeP) [25]. Several samples were collected during the reactions and E was
achieved as the slope of the linear line ln[(1 − c)(1 − eeS)] versus ln[(1 − c)(1 + eeS)]. To reduce the
calculation error caused by hydrolysis of (S)-2, E values have been calculated on the basis of several
samples at an early stage of the reactions where hydrolysis of the product would be expected to
be negligible.

3.4. Preparative Scale O-acylation of Rac-1

Rac-1 (R1 = Me; 0.75 g, 3.4 mmol) was dissolved into MTBE (136 mL). Addition of CAL-A
(CAT#NZL-101-IMB; 13.6 g), anhydrous, and hydrated MgCl2 (both 9.1 g) and isopropenyl acetate (11.3
mL, 102.2 mmol) started the reaction. Lipase-catalyzed reactions were carried out at room temperature
and ambient pressure. A reciprocating platform shaker (Heidolph Promax 2020, speed 170 1/min)
was used to mix the solution. The reaction was stopped at 50% conversion (t = 48 h) by filtering off

the enzyme.
(R)-1 and (S)-2 were separated by column chromatography on silica gel using petroleum

ether:acetone (95:5 and later 1:1, v/v) as eluent. During the elution, fast and qualitative silica gel
thin-layer chromatography (TLC) was applied to follow the fractionation. Spots were detected under
UV illumination (Camag, Muttenz, Switzerland). Finally, fractions were combined and evaporated
with a rotary evaporator, followed by drying in a desiccator.

4. Conclusions

Racemic 4-dibenzocyclooctynol (DIBO, rac-1) has been previously introduced as part of a potential
PET imaging agent to diagnose pancreatic cancer. Instead of racemates, enantiopure imaging agents
are preferred to ensure specific biological target binding and, additionally, to reduce the radiation dose
of patients. In this paper, we introduce a novel biocatalytic approach to separate the enantiomers of
a highly strained and bulky molecular species, DIBO, the enantiomers of which have been difficult
to isolate or synthesize with asymmetric catalysts. Kinetic resolution was performed with high
enantioselectivity (E = 230) by lipase A from Candida antarctica (CAL-A). In optimized conditions, (R)-1
(ee 95%) and (S)-2 (R1 = Me; ee 96%) were separated using methyl tert-butyl ether as the solvent and
isopropenyl acetate as the acyl donor. Accordingly, both enantiomers of DIBO became simultaneously
available for biological experiments. The current research results exemplify the unparalleled ability of
CAL-A to accommodate bulky substrate molecules by opening of the flap during interfacial activation
and subsequently to provide practically unlimited space at the active site. The basis of the ability of
CAL-A to distinguish the DIBO enantiomers was further shown to reside in the hydrogen bonding
network of the catalytic machinery, where the tetrahedral anionic intermediate leading to (R)-2 is not
able to form a hydrogen bond with the catalytic H366 while the carbonyl oxygen is pointing slightly
away from the oxyanion hole.

In silico docking was used to explain and illustrate the binding properties of several acyl donors.
The results are in excellent accordance with the obtained experimental data. The acyl binding pocket
is highly hydrophobic, and the long hydrocarbon chains of butanoate and laurate were shown to
bind tightly into the acyl binding pocket with dispersion forces. This likely results in slower reaction
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rate and even inhibition of CAL-A. Thus, short-chain vinyl and isopropenyl acetates were clearly the
best acyl donors, whereas methoxyacetate with a polar chain was repelled by the acyl binding pocket
of CAL-A.

Anhydrous magnesium salts were successfully used for binding water, thus preventing the
hydrolysis of the product (S)-2 into the starting material (S)-1. In preparative scale resolution, a
1:1 (w/w) mixture of anhydrous and hydrated MgCl2 was the best compromise to achieve high
enantioselectivity and a sufficiently rapid reaction. Surprisingly, fully hydrated Mg2+ hexahydrate
alone impacted positively both the reaction rate and the enantioselectivity, which suggests, as one
option, binding of Mg2+ to the enzyme during the catalytic process. Two possible binding sites for Mg2+

were predicted that could potentially explain the experimentally observed effects on the reaction rate.
The exact coordination sites and effects of other metal ions remain to be investigated in future studies.
Another essential future target is to carry out in vivo PET studies with imaging agents containing
enantiopure DIBO in order to determine their biological targeting characteristics.

Supplementary Materials: The following are available online. HPLC Analyses, Preliminary reaction conditions,
Compound characteristics, Determination of absolute configurations by X-ray diffraction, Docking of acyl donors
and DIBO to CAL-A and Mg2+ binding site prediction.
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