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Abstract
Maternal effects affect offspring phenotype and fitness. However, the roles of offspring sex-specific sensitivity to maternal 
glucocorticoids and sex-biased maternal investment remain unclear. It is also uncertain whether telomere length (a marker 
associated with lifespan) depends on early growth in a sex-specific manner. We assessed whether maternal traits includ-
ing corticosterone (CORT; the main avian glucocorticoid) and in ovo growth rate are sex-specifically related to offspring 
CORT exposure, relative telomere length (RTL) and body condition in eiders (Somateria mollissima). We measured feather 
CORT (fCORT), RTL and body condition of newly hatched ducklings, and growth rate in ovo was expressed as tarsus length 
at hatching per incubation duration. Maternal traits included baseline plasma CORT, RTL, body condition and breeding 
experience. We found that fCORT was negatively associated with growth rate in daughters, while it showed a positive 
association in sons. Lower offspring fCORT was associated with higher maternal baseline plasma CORT, and fCORT was 
higher in larger clutches and in those hatching later. The RTL of daughters was negatively associated with maternal RTL, 
whereas that of males was nearly independent of maternal RTL. Higher fCORT in ovo was associated with longer RTL at 
hatching in both sexes. Duckling body condition was mainly explained by egg weight, and sons had a slightly lower body 
condition. Our correlational results suggest that maternal effects may have heterogeneous and even diametrically opposed 
effects between the sexes during early development. Our findings also challenge the view that prenatal CORT exposure is 
invariably associated with shorter telomeres.

Keywords Early environment · Feather corticosterone · Prenatal growth · Somateria mollissima · Telomere length

Introduction

Early-life exposure to glucocorticoids may have a profound 
effect on offspring phenotype, either preparing the off-
spring for their postnatal environment or decreasing their 
fitness value (Haussmann et al. 2012; Herborn et al. 2014; 
Monaghan and Haussmann 2015). Together with mater-
nal attributes such as breeding experience, body condition 
and reproductive investment, maternal glucocorticoids are 
thought to shape the early-life environment of offspring 
(Love et al. 2005; Monaghan 2008). An intriguing but as 
yet little explored possibility is that mothers are capable 
of shaping the offspring phenotype in a sex-specific man-
ner (Young and Badyaev 2004; Love et al. 2005; Badyaev 
et al. 2006). In addition, developing embryos, though con-
ventionally viewed as merely passive receivers of maternal 
endocrine signals, may in fact be capable of metabolizing 
glucocorticoids, thus modifying maternal effects (Reed and 
Clark 2011; Vassallo et al. 2014). Further, the impact of 
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glucocorticoids on the developing embryo can differ depend-
ing on its sex (Butkevich et al. 2009; Jimeno et al. 2017). 
Such sex-specific effects of maternal glucocorticoids may 
arise due to differential regulation of the hypothalamic–pitu-
itary axis between the sexes (Schmidt et al. 2014). There-
fore, postnatal phenotypic differences between the sexes may 
be the product of a complex interplay between sex-specific 
maternal deposition of substances into eggs, the ability of 
embryos to modulate the effects of these substances, and 
interactions between maternal deposition and embryonic 
modulation (Vassallo et al. 2014; Groothuis et al. 2019).

Telomeres, the protective ends of chromosomes, may rep-
resent a potential mechanism by which variation in early-
life glucocorticoid exposure may translate into differential 
survival prospects (Angelier et al. 2018; Gil et al. 2019). 
Exposure to glucocorticoids during early-life can severely 
reduce telomere length (Haussmann et al. 2012; Herborn 
et al. 2014) and thereby impact survival prospects (Hei-
dinger et al. 2012; Barrett et al. 2013). However, there are 
also sex differences in lifespan, which may be mirrored in 
sex-dependent variation in telomere dynamics (Barrett and 
Richardson 2011; Parolini et al. 2015; Noguera et al. 2015). 
Such differences may arise due to an unguarded sex chro-
mosome in the heterogametic sex (Barrett and Richardson 
2011). Sexes also differ in their susceptibility to glucocorti-
coids during the developmental stages (Jimeno et al. 2017). 
Furthermore, resources allocated to growth may be at the 
expense of resources allocated to somatic maintenance and 
thereby longevity. Males and females can differ in growth 
trajectories (Parolini et al. 2015) and in the effects of prena-
tal glucocorticoid exposure on growth (Tissier et al. 2014). 
These differences may translate into different resource 
investment priorities between growth and self-maintenance, 
ultimately leading to significant differences in developmen-
tal telomere attrition between the sexes (Barrett and Rich-
ardson 2011). However, it remains largely unknown, both 
experimentally and in the field, how maternal effects and 
specifically prenatal exposure to glucocorticoids are linked 
to sex-specific differences in telomere length (but see Hauss-
mann et al. 2012; Gil et al. 2019).

Cellular stress damage and telomere shortening may be 
particularly intense during early development, with impor-
tant consequences for life expectancy and future perfor-
mance (Heidinger et al. 2012; Monaghan and Ozanne 2018). 
Despite this importance, non-destructive quantification of 
glucocorticoid exposure during fetal development is chal-
lenging (von Engelhardt and Groothuis 2005). In birds, cor-
ticosterone (CORT; the main glucocorticoid in birds) depos-
ited into structures of feather keratin gives a pooled measure 
of the fluctuations in baseline CORT levels, as well as the 
frequency, magnitude and duration of stress-induced CORT 
elevations experienced by the bird over the period of feather 
growth (Bortolotti et al. 2008; Romero and Fairhurst 2016). 

Consequently, feather CORT (fCORT) measured at hatching 
represents a non-destructive way of measuring glucocorti-
coid exposure in ovo. An additional benefit is that fCORT 
measured at hatching avoids direct competition-induced 
stress among nestlings, which may demonstrably induce 
telomere shortening (e.g., Cram et al. 2017).

Here, we examine the influence of prenatal growth and 
physiological maternal effects (body condition, breeding 
experience, CORT level and telomere length) on offspring 
prenatal CORT exposure (fCORT), body condition and tel-
omere length, and whether any such effects may be sex spe-
cific. We also investigate whether CORT exposure while in 
ovo (measured as fCORT) may be correlated with telomere 
length and body condition at hatching. To this end, we stud-
ied a wild population of eiders (Somateria mollissima). 
This long-lived and precocial species produces a relatively 
small clutch of large eggs, making it an ideal study model 
for investigating maternal effects on offspring phenotype. 
Importantly, there is no significant sexual size dimorphism 
at hatching in this species (Lehikoinen et al. 2008), and 
therefore, potential sex differences in our variables of inter-
ests will not be mere by-products of size dimorphism.

Materials and methods

Field data collection

Incubating females were trapped on their nests using hand 
nets at Tvärminne (59° 50′ N, 23° 15′ E), southwestern 
Finland, in 2013. Upon capture, body weight, radius–ulna 
length, clutch size, clutch weight, and incubation stage, 
using egg floatation, were recorded. The estimated incuba-
tion stage does not statistically differ from the real incuba-
tion stage based on direct observation (Kilpi and Lindström 
1997). Blood samples (< 1 ml) were taken within 3 min 
(mean ± SD = 145 ± 21 s, N = 199) of female capture, and 
immediately stored on ice in a cool box and transported to 
the laboratory within 2–4 h. Blood plasma was separated 
from blood cells by centrifugation and both components 
were stored in − 80 °C until further analyses. Minimum years 
of maternal experience (hereafter, breeding experience) was 
calculated as the number of years since the bird was first 
trapped; chronological age could not be determined because 
females are not ringed as ducklings. This is a reasonably 
good proxy for female age in this population annually ringed 
since 1990 due to the high breeding philopatry and because 
the majority of breeding females are captured in each year 
(Öst and Steele 2010; Jaatinen and Öst 2011). Nevertheless, 
age can only be estimated and not accurately determined 
in our study, especially because there is some variation in 
the age at first breeding (typically 3 years, range 2–5 years; 
Hario and Rintala 2009). A female’s body condition was 
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estimated as body weight at hatching of her clutch corrected 
for structural size, i.e., the standardized residuals from a 
linear regression of log-transformed projected weight at 
hatching on log-transformed radius–ulna length (Öst et al. 
2008a; Öst and Steele 2010). Projected weight at hatching 
was obtained by subtracting an estimate of the expected 
body weight loss during the remaining incubation time from 
measured incubation body weight. Females were weighed 
once, but as they abstain from feeding during incubation and 
were captured at different times in their incubation, we can 
derive an estimate of mean weight loss rate during incuba-
tion as the slope of the regression of log-transformed body 
mass (response variable) on log-transformed incubation time 
and projected hatching date (Öst et al. 2008a).

We estimated relative reproductive investment as stand-
ardized residual mean egg weight. Each clutch was weighed 
to the nearest 1 g and mean egg weight was calculated. To 
correct for eggs becoming lighter with progressing incuba-
tion, standardized residual mean egg weight was represented 
by the standardized residuals from a linear regression of log-
transformed mean egg weight on log-transformed incubation 
stage at capture. Clutches exceeding 7, the maximum laid by 
one female (Waldeck et al. 2004), were excluded from fur-
ther analyses due to the presence of parasitic eggs. Although 
clutches smaller than the above threshold may also contain 
some parasitic eggs, this frequency is low in our study popu-
lation (ca. 6% parasitically laid eggs; Waldeck et al. 2004).

Ducklings leave the nest within 24 h of hatching, and 
thus, consecutive nest visits were planned to coincide 
with hatching date estimated by egg floatation. Ducklings 
(N = 304/88 broods) were captured in the nest, weighed, 
and their tarsus length recorded. Growth rate in ovo was 
expressed as tarsus length divided by incubation duration. 
The duration of the incubation period was determined as 
the time difference (in days) between the real hatch date 
observed during nest visits and the estimated date of incu-
bation onset determined by egg floatation at female capture 
(Seltmann et al. 2012). A small blood sample (< 50 µl) and 
1–2 tail feathers were collected. Duckling blood samples 
were immediately stored on ice in a cool box, transported 
to the laboratory within 2–4 h, and stored frozen in − 80 °C 
until further analyses. Duckling body condition was given by 
body weight corrected for structural size to separate aspects 
of body weight that are due to structural size from aspects 
that reflect energy reserves (‘condition’). Body condition 
was, therefore, estimated as the standardized residuals from 
a linear regression of log-transformed body weight on log-
transformed tarsus length.

Molecular sex determination

Duckling sex was determined by molecular sexing which 
is based on the amplification of a part of the gene for the 

chromo-helicase DNA binding protein and yields different-
sized amplicons in female and male eiders (Fridolfsson and 
Ellegren 1999). Of the totally 285 sexed ducklings, 141 
(49.5%) were male, not significantly deviating from an even 
sex ratio (binomial test: P = 0.91).

Telomere assay

We measured relative telomere length (RTL) in red blood 
cells using real-time quantitative PCR (qPCR) (Cawthon 
2002; Criscuolo et al. 2009), using an assay that we have pre-
viously validated for use in female eiders (Noreikiene et al. 
2017). Genomic DNA was extracted using the salt-extraction 
method (Aljanabi and Martinez 1997) and DNA quality was 
controlled spectrophotometrically and with agarose gel elec-
trophoresis. The telomere assay included amplification of a 
standard gene (glyceraldehyde 3-phosphate dehydrogenase 
gene; gapdh) using primers developed for chicken gapdh 
Fw.: (5′-TCC TGT GAC TTC AAT GGT GA-3′) and gapdh 
Rev.: (5′-AAA CAA GCT TGA CGA AAT GG-3′) and telom-
eric repeats using universal primers (Cawthon 2002). Both 
telomere and gapdh reactions were carried out in triplicate 
on the same plate in BIO-RAD X1000 real-time thermal 
cyclers (BIO-RAD) using iQ™  SYBR® Green qPCR mix 
(BIO-RAD). Every plate also included serial doubling dilu-
tions of a standard sample, which was later used to construct 
standard curves. Further details on the application of the 
telomere assay to the current study population can be found 
elsewhere (Noreikiene et al. 2017). The mean qPCR efficien-
cies as determined by the standard curves for telomere and 
gapdh reactions fell within the acceptable range of 85–115% 
(Bize et al. 2009). The intra-plate CVs for telomeres and 
gapdh reactions were 2% and 1.5%, respectively. Inter-plate 
CVs were 5% for telomeres and 3% for gapdh. A relative 
TL (RTL) was calculated by taking qPCR efficiencies into 
consideration (Pfaffl 2001).

Corticosterone assays

CORT in female blood plasma and in feathers of ducklings 
was analyzed using radioimmunoassay. An important note 
to make here is that female baseline CORT levels in blood 
measured at different incubation stages may not accurately 
reflect corticosterone deposited in eggs at the time of lay-
ing. Nevertheless, baseline blood corticosterone levels in 
female eiders do not vary depending on incubation stage 
at capture, and show individual consistency even between 
different breeding seasons (Jaatinen et al. 2013). It is, there-
fore, conceivable that the maternal baseline plasma CORT 
concentrations measured here are fairly closely correlated 
with actual maternal corticosterone deposited in eggs. Adult 
female plasma CORT was measured using a double antibody 
kit (ImmuChemTMMPBiomedicals, Orangeburg, NY). A 
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validation of the plasma CORT RIA kit for female eiders, 
including the extraction method, is given by Nilsson (2004). 
Duckling feather corticosterone (fCORT) was analyzed 
according to Bortolotti et al. (2008) with slight modifica-
tions. For each duckling, an unwashed feather was measured 
(length) with a caliper to the nearest 0.1 mm. Then, 10 ml of 
methanol (HPLC grade) was added to each feather to extract 
CORT. The feathers were placed in a sonicating water bath 
at room temperature for 30 min, followed by incubation at 
50 °C overnight in a shaking water bath. The methanol was 
then separated from feather material by filtration, using fil-
tered syringes. The methanol extract was then placed in a 
water bath (50 °C) and methanol was evaporated in a fume 
hood. The extract was reconstituted in a small volume of 
phosphate buffer system (PBS; 0.05 m, pH 7.6). All extracts 
were subsequently analyzed by radio-immunoassay as previ-
ously described (Meillère et al. 2016). All samples were run 
in 6 assays and the intra- and inter-assay CVs were, respec-
tively, 9.34% and 11.65%. Samples were randomly distrib-
uted in the assays. Duckling fCORT incorporates all CORT 
exposure experienced during development (ca. 26 days) and 
up to 24 h post-hatch.

Statistical analyses

We investigated the degree to which a common in ovo envi-
ronment (maternal effects) and genetic background affected 
duckling fCORT, RTL and body condition by calculating the 
within-brood repeatability for these variables. Within-brood 
repeatability is given by the intraclass correlation coefficient, 
representing the fraction of total phenotypic variance that 
can be attributed to variation among ducklings in the same 
brood. High within-brood repeatability indicates that the 
common environment and/or genetic effects are important 
determinants of duckling fCORT, RTL and body condition. 
Within-brood repeatability was calculated using the rptR 
package (Stoffel et al. 2017).

To analyze whether duckling fCORT, RTL and body con-
dition are associated with in ovo growth, maternal traits and 
CORT levels in a sex-specific manner, we constructed three 
linear mixed models (LMMs) based on restricted maximum 
likelihood (REML) parameter estimation. In these LMMs, 
the response variables duckling fCORT, RTL and body 
condition, respectively, were explained by duckling sex and 
growth rate, maternal blood plasma CORT, and maternal 
RTL, breeding experience and body condition. The two-way 
interactions between offspring sex and maternal traits, as 
well as between offspring sex and growth rate, were included 
in all three models. Standardized residual mean egg weight 
corrected for incubation stage was included in all models to 
control for effects on offspring phenotype due to differences 
in maternal reproductive investment, which may influence, 
e.g., offspring telomere lengths (McLennan et al. 2018). 

Also clutch size and hatch date may influence offspring tel-
omere dynamics (Heidinger et al. 2016) and were, therefore, 
included as covariates. Time to maternal blood sample was 
included as a technical covariate. We also investigated the 
potential impact of CORT in ovo on RTL and body condition 
at hatching, by including fCORT as a predictor in the analy-
sis of duckling RTL and body condition. Mother identity 
was included as a random factor in all models to account 
for interdependence of observations from the same broods. 
Duckling telomere lengths were mean-centered within plates 
(mean ± SE = 30.6 ± 5.2 ducklings per plate, N = 8 plates/245 
ducklings) to control for significant but non-informative 
differences in mean RTL between plates. Mean-centring 
allowed us to adjust for plate-related bias without affect-
ing relative differences in RTL between individuals. This 
approach was further justified by the reasonable large sample 
size per plate. Duckling RTL and fCORT levels were log-
transformed in order for the residuals of all models to adhere 
to the assumption of normality.

We identified final models in which all covariates were 
statistically significant (α = 0.05) using stepwise model 
reduction, which is considered a conservative yet power-
ful model selection strategy (Murtaugh 2009). Briefly, we 
compared model deviance with and without each fixed 
effect using likelihood ratio tests until only significant terms 
remained. All analyses were conducted using the statistical 
software R 3.4.3 (R Core Team 2017). Due to missing data 
on some variables, the final sample size was 181 ducklings 
[89 males (49.2%)] and 58 adult females in the analyses 
of duckling fCORT and body condition, and 156 ducklings 
[77 males (49.4%)] and 56 adult females in the analysis of 
duckling RTL.

Results

Duckling fCORT

Duckling fCORT showed relatively low but significant 
within-brood repeatability (r = 0.25, 95% CI 0.13–0.37, 
P < 0.001), which suggests that the fCORT levels of duck-
lings from the same brood resemble each other. Offspring 
sex and growth rate in ovo interactively explained variation 
in offspring fCORT (Table 1): lower fCORT of daughters 
was associated with increasing growth rate, while fCORT 
levels and growth were positively correlated in sons (Fig. 1). 
Lower offspring fCORT was also associated with higher 
maternal baseline plasma CORT concentrations (Fig. 2a), 
and duckling fCORT was higher in larger clutches (Fig. 2b) 
and in clutches hatching later (Fig. 2c). Duckling fCORT 
was not related to maternal RTL, body condition, breeding 
experience or standardized residual egg weight (Table 1).
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Duckling RTL

Duckling RTL showed low but significant within-brood 
repeatability (r = 0.15, 95% CI 0.01–0.29, P = 0.01), 
indicating that the telomere lengths of brood-mates were 
correlated. Maternal RTL had a sex-specific association 
with offspring RTL (Table 2). The RTL of daughters was 
negatively associated with maternal RTL, whereas that of 
males was nearly independent of maternal RTL (Fig. 3). 

Higher fCORT in ovo was associated with longer RTL at 
hatching in both sexes (Fig. 4). No other variables or inter-
actions were found to be significantly related to duckling 
RTL (Table 2).

Duckling body condition

Duckling body condition showed high and significant 
within-brood repeatability (r = 0.56, 95% CI 0.42–0.66, 
P < 0.001), i.e., the body condition of ducklings from the 
same brood tends to be similar. Duckling body condition 
was strongly positively related to standardized residual 
mean egg weight (Fig.  5a) and male ducklings had a 
slightly lower body condition at hatching than females 
(Fig. 5b). No other predictors or interactions were retained 
in the final model (Table 3).

Discussion

The extent to which adult sexual dimorphism is shaped 
by the early-life maternal environment is poorly known. 
Here, we showed that adult eiders, exhibiting marked sex-
ual differences in plumage characteristics (e.g., color) and 
in the contribution to parental care, exhibit sex-dependent 
associations between CORT exposure, RTL and growth 
already prior to hatching. Below, we aim to bring these 
findings together and explore their implications.

Table 1  Final linear mixed effect model (in bold) and model selection of variables and interactions explaining duckling feather corticosterone 
(fCORT)

Given are the parameter estimates, standard errors (SE), t values and the P values; the model included maternal ID as a random effect (N = 181 
ducklings and 58 females)

Dependent variable Predictor variables Estimate ± SE t P

Log(duckling fCORT) (pg/mm) Sex (male) − 4.44 ± 2.16 − 2.06 0.04
Maternal plasma CORT (ng/ml) − 0.018 ± 0.009 − 2.06 0.04
Clutch size 0.22 ± 0.10 2.13 0.04
Hatch date 0.06 ± 0.03 2.05 0.045
Growth (tarsus length incubation  duration−1) − 1.40 ± 1.24 − 1.13 0.26
Sex (male) × growth 4.00 ± 1.83 2.18 0.03
Maternal body condition 0.26 ± 0.15 1.65 0.10
Sex × maternal RTL − 0.28 ± 0.18 − 1.61 0.11
Sex × maternal plasma CORT − 0.014 ± 0.02 − 0.89 0.38
Breeding experience (years) − 0.023 ± 0.03 − 0.84 0.41
Sex × maternal body condition − 0.20 ± 0.28 − 0.72 0.47
Sex × breeding experience 0.044 ± 0.05 0.83 0.41
Time to maternal blood sample (s) 0.00039 ± 0.0062 0.062 0.95
Standardized residual egg weight 0.0073 ± 0.12 0.062 0.95

Fig. 1  Duckling feather corticosterone (fCORT) at hatching as a 
function of growth in ovo (tarsus length at hatching divided by incu-
bation duration) and offspring sex. Feather corticosterone of female 
offspring (gray line and circles) decreases with increasing growth 
rate, while that of male offspring (black line and circles) is positively 
associated with growth
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Offspring fCORT

Because eider ducklings are size-monomorphic at hatch-
ing (Lehikoinen et al. 2008), the sex-specific relation-
ship between growth and fCORT is unlikely due to any 
qualitative sexual differences in growth trajectories per se. 
Higher fCORT was associated with faster growth of male 
embryos. This finding challenges the views from labora-
tory experiments that exposure to glucocorticoids during 
development retards growth (e.g., Spencer et al. 2003), 
particularly in males (e.g., Cote et al. 2006; Hayward et al. 

2006). However, CORT may also accelerate early growth, 
thereby enhancing antipredator and locomotor functions, 
which may aid survival (‘CORT-activity hypothesis’: 
Breuner and Hahn 2003; Rivers et al. 2012). Increasing 
evidence also suggests that female birds may in fact be 
more susceptible to early-life CORT than males (Verhulst 
et al. 2006; Schmidt et al. 2012; Gil et al. 2019). These 
sexual differences may reflect the fact that CORT and tes-
tosterone levels in eggs are typically positively correlated 
(Ketterson et al. 1991), and testosterone may dispropor-
tionately retard the growth of female embryos (e.g., Henry 
and Burke 1999).

Intriguingly, we found that maternal baseline plasma 
CORT levels were inversely related to offspring fCORT 
levels (Fig. 2a). This result may indicate that offspring ster-
oid levels are not simply a byproduct of maternal steroid 
levels, through passive delivery to the embryo (‘passive 
model’; Moore and Johnston 2008). Furthermore, our find-
ing should not be considered unusual: similar inverse rela-
tionships between maternal plasma CORT levels and CORT 
levels in eggs have also been reported before (e.g., Love 
et al. 2008). Navara et al. (2006) proposed that the yolk may 
act as a reservoir for maternally derived steroids. If this is 
the case, mothers depositing high levels of CORT into yolks 
may experience a subsequent deficit of this hormone, which 
may lead to a negative relationship between maternal and 
egg levels of CORT after laying (Love et al. 2008). Such 
a mechanism may operate regardless of whether maternal 
steroid transfer is passive or actively regulated by both the 
mother and the embryos.

Investment in pre-laying maternal hormone deposition 
may depend on maternal condition: mothers in good condi-
tion may deposit less (e.g., Love et al. 2008) or more (e.g., 
Gasparini et al. 2007) hormones into eggs. We failed to find 
a significant association between maternal body condition 
and duckling fCORT levels (Table 1). However, a 1-year 
snapshot may not adequately capture the full dynamics 
between maternal and offspring CORT levels. Based on 
a multi-year analysis from our study population, elevated 
maternal baseline levels of CORT in blood during incubation 
are associated with poorer body condition of these females 
(Jaatinen et al. 2013). Thus, we cannot exclude indirect asso-
ciations between offspring fCORT levels and maternal con-
dition expressed through links with maternal plasma CORT. 
Higher maternal baseline plasma CORT was associated with 
lower offspring fCORT levels (Fig. 2a), which in turn were 
associated with shorter RTL at hatching (Fig. 4). Shorter 
early-life RTL has been linked with reduced fitness in other 
birds (e.g., Heidinger et al. 2012; Watson et al. 2015). Con-
sequently, while we were unable to examine the fitness con-
sequences of variation in RTL at hatching, female eiders in 
poor condition may be unable to avoid potential long-term 
physiological costs to their offspring.

Fig. 2  Duckling feather corticosterone (fCORT) at hatching as a 
function of a maternal baseline plasma corticosterone (pCORT), b 
clutch size, and c hatching date. Data on female (gray line and cir-
cles) and male offspring (black line and circles) are separated by sex 
for illustrative purposes only, and values for clutch size are jittered for 
visual clarity
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Offspring fCORT levels increased with later hatching. 
This finding agrees with the idea of increasing environmen-
tal harshness and/or a decline in phenotypic quality of breed-
ers with progressing season. Thus, late-nesting females show 
a pronounced increase in baseline plasma CORT levels with 
increased reproductive effort (indexed by total clutch mass) 

(Jaatinen et al. 2013). Offspring fCORT also increased with 
clutch size, which may potentially reflect a trade-off between 
offspring quantity and quality (e.g., Roff 1992). Females that 
laid larger clutches may have produced smaller or lower-
quality eggs. However, whether female eiders actually face 
such a trade-off is unclear. Females laying larger clutches 
show higher survival (Yoccoz et al. 2002) and are in better 
body condition at hatching (Öst and Steele 2010). Further-
more, higher fCORT levels were associated with longer, 

Table 2  Final linear mixed 
effect model (in bold) and 
model selection of variables and 
interactions explaining duckling 
relative telomere length (RTL)

RTL values were log-transformed and mean-centered within plates (see “Statistical analyses”). Given are 
the parameter estimates, standard errors (SE), t values and the P values; the model included maternal ID as 
a random effect (N = 156 ducklings and 56 females)

Dependent variable Predictor variables Estimate ± SE t P

Duckling RTL Sex (male) − 0.45 ± 0.33 − 1.35 0.18
Log(duckling fCORT) (pg/mm) 0.16 ± 0.062 2.65 0.009
Maternal RTL − 0.21 ± 0.11 − 1.85 0.07
Sex (male) × maternal RTL 0.29 ± 0.15 2.01 0.046
Standardized residual egg weight − 0.10 ± 0.097 − 1.05 0.30
Growth (tarsus length incubation  duration−1) 0.65 ± 0.83 0.79 0.44
Breeding experience (years) 0.0036 ± 0.024 0.15 0.88
Sex × breeding experience 0.029 ± 0.043 0.66 0.51
Maternal plasma CORT (ng/ml) − 0.0017 ± 0.0080 − 0.22 0.83
Sex × maternal plasma CORT − 0.011 ± 0.015 − 0.75 0.46
Time to maternal blood sample (s) − 0.0034 ± 0.0056 − 0.61 0.55
Clutch size − 0.052 ± 0.11 − 0.48 0.63
Growth × sex − 0.71 ± 1.59 − 0.45 0.66
Maternal body condition − 0.041 ± 0.16 − 0.26 0.80
Sex × log(duckling fCORT) − 0.047 ± 0.13 − 0.36 0.72
Hatch date 0.005 ± 0.029 0.18 0.86
Sex × maternal body condition − 0.067 ± 0.29 − 0.23 0.82

Fig. 3  Duckling relative telomere length at hatching (log-transformed 
and mean-centered within plates, see “Statistical analyses”) as a func-
tion of maternal relative telomere length. The relative telomere length 
of daughters (gray line and circles) shows a negative relationship with 
maternal relative telomere length, whereas that of sons (black line 
and circles) is essentially independent of maternal relative telomere 
length

Fig. 4  Relative telomere length of ducklings as a function of their 
feather corticosterone (fCORT) level at hatching. Data on female 
(gray line and circles) and male offspring (black line and circles) are 
separated by sex for illustrative purposes
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rather than shorter, RTL at hatching (Fig. 4). Apart from 
any physiological trade-offs, per capita post-hatch duckling 
survival tends to increase with increasing clutch size at hatch 
(Öst et al. 2008b), perhaps because of the larger dilution of 
predation risk afforded by a larger brood (Jaatinen and Öst 
2013).

Offspring RTL

We found a significant mother–offspring correlation of RTL 
only between mother–daughter pairs (Fig. 3). In contrast, 
most of the few published studies have found that maternal 
telomere length in birds is more strongly related to the tel-
omere length of sons (e.g., Becker et al. 2015). Our finding 
is nevertheless not unique. Belmaker (2016) found a stronger 
correlation of RTL in mother–daughter pairs in tree swal-
lows (Tachycineta bicolor). The absence of general patterns 
in sex-specific telomere inheritance highlights the urgent 
need for further research in this area.

We found that longer maternal RTL was associated with 
shorter RTL of daughters. Perhaps relevant in this respect is 
a recent report on black-browed albatrosses (Thalassarche 
melanophrys), showing that younger parents, presumably 
having longer TL, produced offspring with shorter telomeres 
(Dupont et al. 2018). However, extreme caution needs to be 
exercised when attempting to draw parallels to our present 
study. This is because the RTL of adult female eiders shows 
no significant trend with age (Noreikiene et al. 2017), and 
female age was not associated with offspring RTL (Table 2). 

Fig. 5  Duckling body condition at hatching (for definition, see text) 
in relation to a standardized residual egg weight (for definition, see 
text) and b sex (F female, M male)

Table 3  Final linear mixed effect model (in bold) and model selection of variables and interactions explaining duckling residual body weight 
(body condition)

Given are the parameter estimates, standard errors (SE), t values and the P values; the model included maternal ID as a random effect (N = 181 
ducklings and 58 females)

Dependent variable Predictor variables Estimate ±SE t P

Duckling body condition Sex (male) − 0.24 ± 0.12 − 2.02 0.046
Standardized residual egg weight 0.54 ± 0.10 5.70 < 0.001
Maternal plasma CORT (ng/ml) 0.0083 ± 0.0076 1.08 0.28
Clutch size − 0.11 ± 0.090 − 1.18 0.24
Hatch date 0.026 ± 0.026 1.00 0.32
Maternal body condition − 0.080 ± 0.13 − 0.60 0.55
Breeding experience (years) 0.019 ± 0.028 0.66 0.51
Time to maternal blood sample (s) 0.0027 ± 0.0056 0.49 0.63
Growth (tarsus length incubation  duration−1) 0.34 ± 0.93 0.37 0.71
Sex × growth 1.30 ± 1.17 1.11 0.27
Sex × breeding experience 0.021 ± 0.034 0.61 0.54
Maternal RTL 0.031 ± 0.10 0.31 0.76
Log(duckling fCORT) (pg/mm) − 0.014 ± 0.050 − 0.28 0.78
Sex × log(duckling fCORT) 0.042 ± 0.094 0.44 0.66
Sex × maternal RTL − 0.029 ± 0.11 − 0.25 0.80
Sex × maternal body condition − 0.058 ± 0.20 − 0.29 0.77
Sex × maternal plasma CORT − 0.00030 ± 0.012 − 0.25 0.81
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Clearly, there is a need for further longitudinal analysis of 
the covariation between maternal and offspring RTL over 
the lifespan of females.

We found that duckling RTL and fCORT levels at hatch-
ing were positively correlated. This result is unexpected at 
first glance, considering that glucocorticoids can downregu-
late telomerase activity (e.g., Choi et al. 2008) and thereby 
accelerate telomere shortening. However, mild increases in 
CORT levels may actually up-regulate telomerase activity 
(Epel et al. 2010). Second, CORT may have growth-inhib-
itory effects (Spencer et al. 2003). Slower development in 
ovo may be associated with a smaller body size and longer 
telomeres at hatching. Indeed, duckling tarsus length sig-
nificantly decreased with increasing incubation duration in 
our present data (LMM (REML): b = − 0.17 ± 0.056 (SE), 
t = − 3.14, P = 0.003, N = 181 ducklings/58 broods). Again, 
however, caution is warranted. In ovo growth and fCORT 
levels at hatching only showed a negative association in 
female offspring (Fig. 1). Incubation duration may also 
depend on individual quality. Thus, female eiders in good 
body condition, having higher hatching success (Lehikoinen 
et al. 2010) and survival (Ekroos et al. 2012), have a longer 
incubation period (Seltmann et al. 2012). A good-condition 
female may afford the energetic strain of a longer incubation 
period, which may allow producing offspring with higher 
survival prospects (Hanssen et al. 2002). These open ques-
tions aside, the present findings suggest that higher prena-
tal CORT levels are not associated with shorter telomeres. 
Because telomere length may be positively correlated with 
survival early in life (e.g., Watson et al. 2015), CORT expo-
sure during this sensitive stage of an eider’s life need not 
have negative fitness consequences.

Offspring body condition

Duckling body condition was mainly explained by direct 
maternal energetic investment, i.e., standardized residual 
egg weight. Offspring body condition is likely an impor-
tant proxy of subsequent survival. Thus, the survival and 
recruitment of female eiders is related to their relative body 
condition as ducklings (Christensen 1999). It is also perti-
nent that body condition is individually consistent between 
years in breeding adult female eiders (Jaatinen and Öst 2011; 
Ekroos et al. 2012). Furthermore, female body condition 
is positively correlated with clutch size, which, in turn, is 
positively correlated with post-hatch duckling survival (Öst 
et al. 2008b).

There were no connections between duckling body condi-
tion and maternal baseline plasma CORT or maternal RTL 
(Table 3). Baseline plasma CORT reflects a ‘snapshot’ of 
the activity of the CORT-releasing hypothalamic–pitui-
tary–adrenal axis and may, therefore, not accurately portray 
the actual exposure to physiologically relevant endocrine 

signals (Fairhurst et al. 2013). The absence of relationship 
between maternal RTL and duckling body condition is not 
entirely unexpected on theoretical grounds. As suggested 
by Monaghan and Ozanne (2018), rates of biological aging 
(indexed by telomere attrition) could be largely independent 
of levels of maternal resources transferred to the developing 
embryos (‘resource-independent trade-offs’). Consequently, 
there may be no association between maternal RTL and off-
spring body reserves.

Conclusions and future directions

This study suggests that the early developmental environ-
ment may exert heterogeneous effects on the sexes, and 
that prenatal CORT exposure need not be associated with 
shorter telomeres. However, due to the correlative nature 
of this study, the extent to which specific offspring pheno-
types represent adaptive plasticity under natural conditions 
is unknown. We also encourage studies investigating the 
relative control that mothers and offspring have in regulat-
ing maternal glucocorticoids. Selection may favor resistance 
mechanisms minimizing the costs incurred by the sex facing 
the largest costs of maternal glucocorticoids (Sheriff et al. 
2017). Individual-based, longitudinal data will be needed 
to assess the long-term fitness consequences of early-life 
exposure to maternal glucocorticoids.
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