Sammanfattning
Let X be a Banach space. It is proved that the composition operator on X - valued Hardy spaces, weighted Bergman spaces and Bloch spaces is weakly compact or Rosenthal if and only if both id: X → X and the corresponding composition operator on scalar valued spaces are weakly compact or Rosenthal, respectively.
Originalspråk | Engelska |
---|---|
Sidor (från-till) | 233-248 |
Antal sidor | 16 |
Tidskrift | Annales Academiae Scientiarum Fennicae Mathematica |
Volym | 26 |
Nummer | 1 |
Status | Publicerad - 2001 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |