Topological structure of the set of weighted composition operators on weighted Bergman spaces of infinite order

José Bonet*, Mikael Lindström, Elke Wolf

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

7 Citeringar (Scopus)

Sammanfattning

We consider the topological space of all weighted composition operators on weighted Bergman spaces of infinite order endowed with the operator norm. We show that the set of compact weighted composition operators is path connected. Furthermore, we find conditions to ensure that two weighted composition operators are in the same path connected component if the difference of them is compact. Moreover, we compare the topologies induced by L(H) and L(Hν) on the space of bounded composition operators and give a sufficient condition for a composition operator to be isolated.

OriginalspråkEngelska
Sidor (från-till)195-210
Antal sidor16
TidskriftIntegral Equations and Operator Theory
Volym65
Nummer2
DOI
StatusPublicerad - okt. 2009
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Topological structure of the set of weighted composition operators on weighted Bergman spaces of infinite order”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här