Time-space-resolved origami hierarchical electronics for ultrasensitive detection of physical and chemical stimuli

M Zhang, JJ Sun, M Khatib, Lin Z-Y, Chen Z-H, W Saliba, A Gharra, YD Horev, V Kloper, Y Milyutin, Tan Phat Huynh, S Brandon, G Shi, H Haick

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

49 Citeringar (Scopus)
13 Nedladdningar (Pure)


Recent years have witnessed thriving progress of flexible and portable electronics, with very high demand for cost-effective and tailor-made multifunctional devices. Here, we report on an ingenious origami hierarchical sensor array (OHSA) written with a conductive ink. Thanks to origami as a controllable hierarchical framework for loading ink material, we have demonstrated that OHSA possesses unique time-space-resolved, high-discriminative pattern recognition (TSR-HDPR) features, qualifying it as a smart sensing device for simultaneous sensing and distinguishing of complex physical and chemical stimuli, including temperature, relative humidity, light and volatile organic compounds (VOCs). Of special importance, OSHA has shown very high sensitivity in differentiating between structural isomers and chiral enantiomers of VOCs -opening a door for wide variety of unique opportunities in several length scales.
Sidor (från-till)
Antal sidor10
TidskriftNature Communications
StatusPublicerad - 2019
MoE-publikationstypA1 Tidskriftsartikel-refererad

Citera det här