Temperature effects on dynamic water absorption into paper

Joel Songok, Pekka Salminen, Martti Toivakka

    Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

    32 Citeringar (Scopus)

    Sammanfattning

    Mechanisms controlling short time water absorption and the effect of temperature on water absorption into paper were investigated by analyzing previously published data. A dynamic contact angle effect caused by contact line friction explained the liquid uptake dynamics at short times. The water absorption rate increase with temperature is suggested to be controlled by the molecular processes occurring in front of the advancing liquid front. The increase in the non-equilibrium vapor pressure at air-liquid interface leads to higher water molecule adsorption onto fibers and associated lowering of the solid-gas interfacial tension, thereby increasing the wetting velocity and water absorption. The classical LucasWashburn equation was found to be inadequate for predicting water absorption into paper both at short times and as a function of temperature.
    OriginalspråkOdefinierat/okänt
    Sidor (från-till)373–377
    Antal sidor5
    TidskriftJournal of Colloid and Interface Science
    Volym418
    DOI
    StatusPublicerad - 2014
    MoE-publikationstypA1 Tidskriftsartikel-refererad

    Nyckelord

    • Contact angle
    • Liquid penetration
    • Paper
    • Temperature dependence

    Citera det här