Sammanfattning
In this paper we present a framework for subspace identification of multiple-input multiple output linear time-invariant systems from data corrupted by outliers and piece-wise linear trends. The subspace identification problem is formulated as a sparsity constrained rank minimization problem that is relaxed using the nuclear norm and the l1-norm. The proposed identification method has been validated on a simulated example and on a case study using data from a pilot-plant distillation column.
Originalspråk | Odefinierat/okänt |
---|---|
Titel på värdpublikation | 27th European Symposium on Computer Aided Process Engineering |
Redaktörer | Antonio Espuña, Moisès Graells, Luis Puigjaner |
Förlag | Elsevier |
Sidor | 307–312 |
ISBN (elektroniskt) | 978-0-444-63970-7 |
ISBN (tryckt) | 978-0-444-63965-3 |
DOI | |
Status | Publicerad - 2017 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | European Symposium on Computer Aided Process Engineering (ESCAPE) - 27th European Society of Computer-Aided Process Engineering (ESCAPE) Varaktighet: 1 okt. 2017 → 5 okt. 2017 |
Konferens
Konferens | European Symposium on Computer Aided Process Engineering (ESCAPE) |
---|---|
Period | 01/10/17 → 05/10/17 |