Subspace identification for MIMO systems in the presence of trends and outliers

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

3 Citeringar (Scopus)

Sammanfattning

In this paper we present a framework for subspace identification of multiple-input multiple output linear time-invariant systems from data corrupted by outliers and piece-wise linear trends. The subspace identification problem is formulated as a sparsity constrained rank minimization problem that is relaxed using the nuclear norm and the l1-norm. The proposed identification method has been validated on a simulated example and on a case study using data from a pilot-plant distillation column.

OriginalspråkOdefinierat/okänt
Titel på värdpublikation27th European Symposium on Computer Aided Process Engineering
RedaktörerAntonio Espuña, Moisès Graells, Luis Puigjaner
FörlagElsevier
Sidor307–312
ISBN (elektroniskt)978-0-444-63970-7
ISBN (tryckt)978-0-444-63965-3
DOI
StatusPublicerad - 2017
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangEuropean Symposium on Computer Aided Process Engineering (ESCAPE) - 27th European Society of Computer-Aided Process Engineering (ESCAPE)
Varaktighet: 1 okt. 20175 okt. 2017

Konferens

KonferensEuropean Symposium on Computer Aided Process Engineering (ESCAPE)
Period01/10/1705/10/17

Citera det här