Sammanfattning
Let L(X) be the space of bounded linear operators on the Banach space X. We study the strict singularity and cosingularity of the two-sided multiplication operators 5 → ASB on L(X), where A, B ∈ L(X) are fixed bounded operators and X is a classical Banach space. Let 1 < p < ∞ and p ≠ 2. Our main result establishes that the multiplication S → ASB is strictly singular on L(Lp(0, 1)) if and only if the non-zero operators A, B ∈ L(Lp(0,1)) are strictly singular. We also discuss the case where X is a ℒ1 - or a ℒ ∞-space, as well as several other relevant examples. ©Canadian Mathematical Society 2005.
Originalspråk | Engelska |
---|---|
Sidor (från-till) | 1249-1278 |
Antal sidor | 30 |
Tidskrift | Canadian Journal of Mathematics |
Volym | 57 |
Nummer | 6 |
DOI | |
Status | Publicerad - 2005 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |