Spaces of Operators Between Frechet Spaces

José Bonet, Mikael Lindström

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

12 Citeringar (Scopus)

Sammanfattning

Motivated by recent results on the space of compact operators between Banach spaces and by extensions of the Josefson-Nissenzweig theorem to Frechet spaces, we investigate pairs of Frechet spaces (E,F) such that every continuous linear map from E into F is Montel, i.e. it maps bounded subsets of E into relatively compact subsets of F. As a consequence of our results we characterize pairs of Kothe echelon spaces (E,F) such that the space of Montel operators from E into F is complemented in the space of all continuous linear maps from E into F.

OriginalspråkEngelska
Sidor (från-till)133-144
Antal sidor12
TidskriftMathematical Proceedings
Volym115
Utgåva1
DOI
StatusPublicerad - jan 1994
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Spaces of Operators Between Frechet Spaces”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här