Sammanfattning
Label-free single-molecule detection has been achieved so far by funnelling a large number of ligands into a sequence of single-binding events with few recognition elements host on nanometric transducers. Such approaches are inherently unable to sense a cue in a bulk milieu. Conceptualizing cells' ability to sense at the physical limit by means of highly-packed recognition elements, a millimetric sized field-effect-transistor is used to detect a single molecule. To this end, the gate is bio-functionalized with a self-assembled-monolayer of 1012 capturing anti-Immunoglobulin-G and is endowed with a hydrogen-bonding network enabling cooperative interactions. The selective and label-free single molecule IgG detection is strikingly demonstrated in diluted saliva while 15 IgGs are assayed in whole serum. The suggested sensing mechanism, triggered by the affinity binding event, involves a work-function change that is assumed to propagate in the gating-field through the electrostatic hydrogen-bonding network. The proposed immunoassay platform is general and can revolutionize the current approach to protein detection.
Originalspråk | Odefinierat/okänt |
---|---|
Sidor (från-till) | – |
Antal sidor | 10 |
Tidskrift | Nature Communications |
Volym | 9 |
DOI | |
Status | Publicerad - 2018 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |