Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions

Aayush Kumar Jaiswal*, Vinay Kumar, Alexey Khakalo, Panu Lahtinen, Katariina Solin, Jaakko Pere, Martti Toivakka

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

25 Citeringar (Scopus)
75 Nedladdningar (Pure)

Sammanfattning

High-consistency processing of fibrillated cellulose materials is attractive for commercial applications due to potential for lowered production costs, energy savings and easier logistics. The current work investigated structure–property relationships of fibrillated cellulose suspensions produced at 20% consistency using VTT HefCel (High-consistency enzymatic fibrillation of cellulose) technology. Morphological examination of the fibrillated materials revealed that enzymatic action on the cellulose substrates was not a direct function of enzyme dosage but rather was dependent on the raw material composition. Furthermore, shear viscosity of the HefCel suspensions was found to decrease with increasing enzyme dosage while the water retention increased. The shear viscosity followed power law relationship with the power law index varying in the range 0.11–0.73. The shear-thinning behavior decreased with increasing consistency. Moreover, suspension viscosity (μ) was found to be highly dependent on the consistency (c) as μ ∼ c m, with m ranging from 2.75 to 4.31 for different samples. Yield stress (τ y) of the HefCel suspensions was measured at 7 and 10% consistencies. The performance of the fibrillated cellulose grades in a typical application was demonstrated by casting films, which were characterized for their mechanical properties. Graphic abstract: [Figure not available: see fulltext.]

OriginalspråkEngelska
Sidor (från-till)2087-2104
Antal sidor18
TidskriftCellulose
Volym28
Nummer4
DOI
StatusPublicerad - mars 2021
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Rheological behavior of high consistency enzymatically fibrillated cellulose suspensions”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här