Projekt per år
Sammanfattning
We present the OGAN algorithm for automatic requirement falsification of cyber-physical systems. System inputs and outputs are represented as piecewise constant signals over time while requirements are expressed in signal temporal logic. OGAN can find inputs that are counterexamples for the correctness of a system revealing design, software, or hardware defects before the system is taken into operation. The OGAN algorithm works by training a generative machine learning model to produce such counterexamples. It executes tests offline and does not require any previous model of the system under test. We evaluate OGAN using the ARCH-COMP benchmark problems, and the experimental results show that generative models are a viable method for requirement falsification. OGAN can be applied to new systems with little effort, has few requirements for the system under test, and exhibits state-of-the-art CPS falsification efficiency and effectiveness.
Originalspråk | Engelska |
---|---|
Artikelnummer | 33 |
Tidskrift | Automated Software Engineering |
Volym | 32 |
DOI | |
Status | Publicerad - mars 2025 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Fingeravtryck
Fördjupa i forskningsämnen för ”Requirement falsification for cyber-physical systems using generative models”. Tillsammans bildar de ett unikt fingeravtryck.-
VST: Virtual Sea Trial
Truscan, D. (Ansvarig forskare), Hellström, M. (Ansvarig forskare), Porres Paltor, I. (CoPI), Ahmad, T. (CoI), Chariyarupadannayil Sudheerbabu, G. (Projektmedarbetare), Yaseen, A. (Projektmedarbetare), Khan, S. (Projektmedarbetare) & Mughees, A. (Projektmedarbetare)
01/01/24 → 31/12/26
Projekt: Företag/Business Finland
-
AIDOaRT
Porres Paltor, I. (Ansvarig forskare), Truscan, D. (CoPI), Nybom, K. (CoI), Logacheva, E. (CoI), Winsten, J. (CoI) & Peltomäki, J. (CoI)
01/04/21 → 30/09/24
Projekt: EU