Process design and techno-economical analysis of hydrogen production by aqueous phase reforming of sorbitol

Dmitry A. Sladkovskiy, Lidia Godina, Kirill V. Semikin, Elena V. Sladkovskaya, Daria A. Smirnova, Dmitry Murzin

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

39 Citeringar (Scopus)

Sammanfattning

The present study was focused on detailed sorbitol aqueous phase reforming (APR) process design. Aspen HYSYS software was used to design a 500 kg/h hydrogen production plant operation with sorbitol syrup as a feedstock. For reactor modelling a complex reaction network was taken into account along with phase equilibrium simulations which determined to have a significant impact on the total process heat due to possibility of water evaporation. The model was adjusted and verified using the experimental data with 1%Pt/Al2O3. The process optimization has included several conceptual improvements such as middle pressure steam co-generation and hot water recycle which can significantly decrease the operation costs. The total costs of hydrogen were estimated as 12.97 $/kg, where feedstock costs take the major contribution of 91.8%. The most feasible way of making APR economical attractive is production of polyols from the lignocellulosic biomass.

OriginalspråkOdefinierat/okänt
Sidor (från-till)104–116
TidskriftChemical Engineering Research and Design
Volym134
DOI
StatusPublicerad - 2018
MoE-publikationstypA1 Tidskriftsartikel-refererad

Citera det här