Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples

Essi Laajala*, Viivi Halla-aho, Toni Grönroos, Ubaid Ullah Kalim, Mari Vähä-Mäkilä, Mirja Nurmio, Henna Kallionpää, Niina Lietzén, Juha Mykkänen, Omid Rasool, Jorma Toppari, Matej Orešič, Mikael Knip, Riikka Lund, Riitta Lahesmaa, Harri Lähdesmäki*

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

4 Citeringar (Scopus)
54 Nedladdningar (Pure)

Sammanfattning

DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.

OriginalspråkEngelska
TidskriftEpigenetics
Volym17
Nummer12
DOI
StatusPublicerad - 2022
MoE-publikationstypA1 Tidskriftsartikel-refererad

Finansiering

We are grateful to the personnel of Turku University Hospital. We thank Riitta Veijola, Jorma Ilonen, and Heikki Hyöty for providing the data from the Diabetes Prediction and Prevention (DIPP) study. We thank Mikko Konki and Roosa Kattelus for assistance in the Pyrosequencing. We are grateful to Bishwa R. Ghimire, Asta Laiho, and Laura L. Elo for their insight into the RRBS data analysis. We acknowledge the Turku Bioscience Centre’s core facility, the Finnish Functional Genomics Centre (FFGC) supported by Biocenter Finland, for their assistance. We acknowledge the Finnish Centre for Scientific Computing (CSC) and the computational resources provided by the Aalto Science-IT project.

Fingeravtryck

Fördjupa i forskningsämnen för ”Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här