TY - JOUR
T1 - Partial Oxygen Ordering in Cubic PerovskiteREBa2Fe3O8+w(RE=Gd, Eu, Sm, Nd)
AU - Lindén, J.
AU - Karen, P.
AU - Kjekshus, A.
AU - Miettinen, J.
AU - Karppinen, M.
PY - 1999/5
Y1 - 1999/5
N2 - Single-phase samples of cubicREBa2Fe3O8+wwithRE=Gd, Eu, Sm, Nd were synthesized and equilibrated at 900°C in atmospheres with controlled partial pressures of oxygen. The oxygen content parameterwranged from approximately -0.30, which is the lower decomposition limit, to betweenw=0.17 forRE=Gd andw=0.37 forRE=Nd, achieved in O2without crossing the upper limit. According to57Fe Mössbauer spectroscopy, all samples are antiferromagnets at room temperature, with iron in high-spin states (S=2 for Fe2+and Fe4+;S=5/2 for Fe3+). The contents of divalent or, alter- natively, tetravalent iron states are consistent with the stoichiometry of the samples. At the stoichiometric composition (w=0), all Mössbauer components correspond to trivalent iron, differing only in the coordination geometries of their oxygen neighborhoods. The sum-up of the observed coordination numbers shows that the oxygen disorder in these cubic (by X-ray diffraction) phases is a linear combination of the two limiting cases of oxygen vacancy distribution: binomial (random) and ordered (one vacancy per every third pseudocubic cell). This corresponds to a gradual change from the long-range order seen in triple-perovskite-type phases (RE=Er to Dy) via a short-range order seen in the present systems (RE=Gd to Nd) to a fully random disorder (RE=La). Eventual variations inwaffect the coordination statistics in details, but change the overall picture very little.
AB - Single-phase samples of cubicREBa2Fe3O8+wwithRE=Gd, Eu, Sm, Nd were synthesized and equilibrated at 900°C in atmospheres with controlled partial pressures of oxygen. The oxygen content parameterwranged from approximately -0.30, which is the lower decomposition limit, to betweenw=0.17 forRE=Gd andw=0.37 forRE=Nd, achieved in O2without crossing the upper limit. According to57Fe Mössbauer spectroscopy, all samples are antiferromagnets at room temperature, with iron in high-spin states (S=2 for Fe2+and Fe4+;S=5/2 for Fe3+). The contents of divalent or, alter- natively, tetravalent iron states are consistent with the stoichiometry of the samples. At the stoichiometric composition (w=0), all Mössbauer components correspond to trivalent iron, differing only in the coordination geometries of their oxygen neighborhoods. The sum-up of the observed coordination numbers shows that the oxygen disorder in these cubic (by X-ray diffraction) phases is a linear combination of the two limiting cases of oxygen vacancy distribution: binomial (random) and ordered (one vacancy per every third pseudocubic cell). This corresponds to a gradual change from the long-range order seen in triple-perovskite-type phases (RE=Er to Dy) via a short-range order seen in the present systems (RE=Gd to Nd) to a fully random disorder (RE=La). Eventual variations inwaffect the coordination statistics in details, but change the overall picture very little.
KW - Mössbauer spectroscopy
KW - Perovskites oxygen ordering
KW - Rare earth barium iron oxides
UR - http://www.scopus.com/inward/record.url?scp=0040440098&partnerID=8YFLogxK
U2 - 10.1006/jssc.1999.8178
DO - 10.1006/jssc.1999.8178
M3 - Article
AN - SCOPUS:0040440098
SN - 0022-4596
VL - 144
SP - 398
EP - 404
JO - Journal of Solid State Chemistry
JF - Journal of Solid State Chemistry
IS - 2
ER -