Optimizing Atomic Structures through Geno-Mathematical Programming

A Lahti, Ralf Östermark, K Kokko

    Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

    1 Citeringar (Scopus)

    Sammanfattning

    In this paper, we describe our initiative to utilize a modern well-tested numerical platform in the field of material physics: the Genetic Hybrid Algorithm (GHA). Our aim is to develop a powerful special-purpose tool for finding ground state structures. Our task is to find the diamond bulk atomic structure of a silicon supercell through optimization. We are using the semi-empirical Tersoff potential. We focus on a 2x2x1 supercell of cubic silicon unit cells; of the 32 atoms present, we have fixed 12 atoms at their correct positions, leaving 20 atoms for optimization. We have been able to find the known global minimum of the system in different 19-, 43- and 60-parameter cases. We compare the results obtained with our algorithm to traditional methods of steepest descent, simulated annealing and basin hopping. The difficulties of the optimization task arise from the local minimum dense energy landscape of materials and a large amount of parameters. We need to navigate our way efficiently through these minima without being stuck in some unfavorable area of the parameter space. We employ different techniques and optimization algorithms to do this.
    OriginalspråkEngelska
    Sidor (från-till)911–927
    Antal sidor17
    TidskriftCommunications in Computational Physics
    Volym25
    DOI
    StatusPublicerad - 2019
    MoE-publikationstypA1 Tidskriftsartikel-refererad

    Nyckelord

    • geno-mathematical programming
    • bulk silicon
    • semi-empirical potential

    Fingeravtryck

    Fördjupa i forskningsämnen för ”Optimizing Atomic Structures through Geno-Mathematical Programming”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här