On solving MINLP problems with nonconvex signomials in SHOT

Andreas Lundell, Jan Kronqvist

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskaplig

Sammanfattning

In this abstract, we briefly explain how the mixed-integer nonlinear programming solver SHOT is to be extended with a reformulation framework for nonconvex signomial functions. In the framework, nonconvex terms are convexified using lifting single-variable power and exponential transformations in combination with piecewise linear approximations. This gives a reformulated problem with a convex feasible region that overestimates that of the original nonconvex problem in an extended variable space. The reformulations are implemented using SHOT’s current reformulation functionality. Additionally, an updating mechanism is added to SHOT, which iteratively updates the piecewise linear approximations until the global optimal solution is found.
OriginalspråkEngelska
Titel på värdpublikationJournal of Global Optimization
Undertitel på värdpublikationSpecial Issue on Global Optimization: HUGO
FörlagSpringer
Sidor129-132
Antal sidor4
StatusPublicerad - sep. 2022
MoE-publikationstypB3 Ej refererad artikel i konferenshandlingar
EvenemangHungarian Global Optimization Workshop HUGO 2022 - Szeged, Ungern
Varaktighet: 5 sep. 20228 sep. 2022

Publikationsserier

NamnJournal of global optimization
ISSN (tryckt)0925-5001
ISSN (elektroniskt)1573-2916

Konferens

KonferensHungarian Global Optimization Workshop HUGO 2022
Förkortad titelHUGO
Land/TerritoriumUngern
OrtSzeged
Period05/09/2208/09/22

Fingeravtryck

Fördjupa i forskningsämnen för ”On solving MINLP problems with nonconvex signomials in SHOT”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här