On compactness of operators from Banach spaces of holomorphic functions to Banach spaces

Mikael Lindström, David Norrbo, Stevo Stević

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

3 Citeringar (Scopus)
24 Nedladdningar (Pure)

Sammanfattning

We investigate a widely used application of compactness of bounded linear operators T: X(\BbbB) → Y, where X(\BbbB) is a Banach space of holomorphic functions on the open unit ball \BbbB ⊂ C N and Y is a Banach space. In particular, we show that compactness of the operator when X(\BbbB) is not reflexive, is not a sufficient condition for the property that every bounded sequence (fn) nN in X(\BbbB) such that fn → 0 with respect to the compact open topology as n → ∞, implies that T(fn) → 0 with respect to the norm of Y as n → ∞.

OriginalspråkEngelska
Sidor (från-till)1153-1158
TidskriftJournal of Mathematical Inequalities
Volym18
Nummer3
DOI
StatusPublicerad - sep. 2024
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”On compactness of operators from Banach spaces of holomorphic functions to Banach spaces”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här