On compact and bounding holomorphic mappings

Mikael LindstrÖm*

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

5 Citeringar (Scopus)

Sammanfattning

Let E and F be complex Banach spaces. We say that a holomorphic mapping f from E into F is compact respectively bounding if f maps some neighbourhood of every point of E into a relatively compact respectively bounding subset of F. Recall that a subset of E is bounding if it is mapped onto a bounded set by every complex valued holomorphic mapping on E. Compact holomorphic mappings have been studied by R. Aron and M. Schottenloher in [1]. Since every relatively compact subset of a Banach space is trivially bounding it is clear that every compact holomorphic mapping is bounding. We show that the product of three bounding holomorphic mappings is compact.

OriginalspråkEngelska
Sidor (från-till)356-361
Antal sidor6
TidskriftProceedings of the American Mathematical Society
Volym105
Nummer2
DOI
StatusPublicerad - feb. 1989
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”On compact and bounding holomorphic mappings”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här