Sammanfattning
Possibilistic clustering methods have gained attention in both applied and theoretical research. In this paper, we formulate a general objective function for possibilistic clustering. The objective function can be used as the basis of a mixed clustering approach incorporating both fuzzy memberships and possibilistic typicality values to overcome various problems of previous clustering approaches. We use numerical experiments for a classification task to illustrate the usefulness of the proposal. Beyond a performance comparison with the three most widely used (mixed) possibilistic clustering methods, this also outlines the use of possibilistic clustering for descriptive classification via memberships to a variety of different class clusters. We find that possibilistic clustering using the general objective function outperforms traditional approaches in terms of various performance measures.
Originalspråk | Odefinierat/okänt |
---|---|
Titel på värdpublikation | Information Processing and Management of Uncertainty in Knowledge-Based Systems |
Redaktörer | JP Carvalho, Lesot M-J, U Kaymak, S Vieira, B Bouchon-Meunier, RR Yager |
Förlag | Springer |
Sidor | 711–722 |
Antal sidor | 12 |
ISBN (elektroniskt) | 978-3-319-40596-4 |
ISBN (tryckt) | 978-3-319-40595-7 |
DOI | |
Status | Publicerad - 2016 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International conference on information processing and management of uncertainty in knowledge-based systems - IPMU 2016 Varaktighet: 1 jan. 2016 → … |
Konferens
Konferens | International conference on information processing and management of uncertainty in knowledge-based systems |
---|---|
Period | 01/01/16 → … |
Nyckelord
- Classification
- Membership function
- Possibilistic clustering
- Typicality values