Method for the selection of inputs and structure of feedforward neural networks

H. Saxén*, F. Pettersson

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

43 Citeringar (Scopus)

Sammanfattning

Feedforward neural networks of multi-layer perceptron type can be used as nonlinear black-box models in data-mining tasks. Common problems encountered are how to select relevant inputs from a large set of variables that potentially affect the outputs to be modeled, as well as high levels of noise in the data sets. In order to avoid over-fitting of the resulting model, the input dimension and/or the number of hidden nodes have to be restricted. This paper presents a systematic method that can guide the selection of both input variables and a sparse connectivity of the lower layer of connections in feedforward neural networks of multi-layer perceptron type with one layer of hidden nonlinear units and a single linear output node. The algorithm is illustrated on three benchmark problems.

OriginalspråkEngelska
Sidor (från-till)1038-1045
Antal sidor8
TidskriftComputers and Chemical Engineering
Volym30
Utgåva6-7
DOI
StatusPublicerad - 15 maj 2006
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Method for the selection of inputs and structure of feedforward neural networks”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här