TY - JOUR
T1 - Long-term exposure to acidification disrupts reproduction in a marine invertebrate
AU - Pansch, Christian
AU - Hattich, Giannina S.I.
AU - Heinrichs, Mara E.
AU - Pansch, Andreas
AU - Zagrodzka, Zuzanna
AU - Havenhand, Jonathan N.
N1 - Publisher Copyright:
Copyright: © 2018 Pansch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/2
Y1 - 2018/2
N2 - Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 ( 400 and 1600 ?atm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.
AB - Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 ( 400 and 1600 ?atm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.
UR - http://www.scopus.com/inward/record.url?scp=85041455220&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0192036
DO - 10.1371/journal.pone.0192036
M3 - Article
C2 - 29408893
AN - SCOPUS:85041455220
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 2
M1 - e0192036
ER -