TY - JOUR
T1 - Lignosulfonate-based macro/mesoporous solid protonic acids for acetalization of glycerol to bio-additives
AU - Jyoti Konwar, Lakhya
AU - Samikannu, Ajaikumar
AU - Mäki-Arvela, Päivi
AU - Boström, Dan
AU - Mikkola, Jyri-Pekka
N1 - tk.
PY - 2018
Y1 - 2018
N2 - The enclosed paper introduces a novel, scalable and environmentally benign process for making strongly acidic solid meso/macroporous carbon catalysts from Na-lignosulfonate (LS), a byproduct from sulfite pulping. Ice-templated LS was converted to strongly acidic macro/mesoporous solid protonic acids via mild pyrolysis (350–450 °C) and ion/H+ exchanging technique. The synthesized materials were extensively characterized by FT-IR, Raman, XRD, XPS, TGA, FE-SEM, TEM and N2-physisorption methods. These LS derived materials exhibited a macro/mesoporous and highly functionalized heteroatom doped (O, S) carbon structure with large amounts of surface OH, COOH and SO3H groups similar to the sulfonated carbon materials. Further, these carbon materials showed excellent potential as solid acid catalysts upon acetalization of glycerol with various bio-based aldehydes and ketones (acetone, methyl levulinate and furfural), easily outperforming the commercial acid exchange resins (Amberlite® IR120 and Amberlyst® 70). Most importantly, the optimum LS catalyst exhibiting a large specific surface area demonstrated exceptional potential for continuous solketal production (liquid phase atmospheric pressure operation) maintaining its activity (glycerol conversion ≥ 91%) and structural features even after 90 h time on stream.
AB - The enclosed paper introduces a novel, scalable and environmentally benign process for making strongly acidic solid meso/macroporous carbon catalysts from Na-lignosulfonate (LS), a byproduct from sulfite pulping. Ice-templated LS was converted to strongly acidic macro/mesoporous solid protonic acids via mild pyrolysis (350–450 °C) and ion/H+ exchanging technique. The synthesized materials were extensively characterized by FT-IR, Raman, XRD, XPS, TGA, FE-SEM, TEM and N2-physisorption methods. These LS derived materials exhibited a macro/mesoporous and highly functionalized heteroatom doped (O, S) carbon structure with large amounts of surface OH, COOH and SO3H groups similar to the sulfonated carbon materials. Further, these carbon materials showed excellent potential as solid acid catalysts upon acetalization of glycerol with various bio-based aldehydes and ketones (acetone, methyl levulinate and furfural), easily outperforming the commercial acid exchange resins (Amberlite® IR120 and Amberlyst® 70). Most importantly, the optimum LS catalyst exhibiting a large specific surface area demonstrated exceptional potential for continuous solketal production (liquid phase atmospheric pressure operation) maintaining its activity (glycerol conversion ≥ 91%) and structural features even after 90 h time on stream.
KW - Chemical Engineering
KW - Chemical Engineering
KW - Chemical Engineering
U2 - 10.1016/j.apcatb.2017.08.061
DO - 10.1016/j.apcatb.2017.08.061
M3 - Artikel
SN - 0926-3373
VL - 220
SP - 314
EP - 323
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -