Projekt per år
Sammanfattning
We describe two new discrete symmetries of the inviscid Burgers (or Riemann-Hopf) equation ut+uux=0. We derived both of them using a local, formal approach of Hopf algebraic renormalization, a tool recently used in algorithmic computations. We prove that one of them is a Lie point transformation. Symmetries generate new exact solutions from the known solutions and provide useful frames of reference in the study of shock wave formation.
Originalspråk | Engelska |
---|---|
Artikelnummer | 103322 |
Tidskrift | Results in Physics |
Volym | 19 |
DOI | |
Status | Publicerad - 2020 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Fingeravtryck
Fördjupa i forskningsämnen för ”Inner symmetries of the spatially singular part of the solutions of the Burgers equation and their Lie representations”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Slutfört
-
AlgoNano: Algorithmic Nanotechnology: Modeling, Design and Automation of Synthetic Self-Assembly Systems (AlgoNano) (Academy of Finland)
Czeizler, E.
01/09/17 → 31/08/21
Projekt: FA/Övriga Forskningsråd