Heterogeneous catalytic production of conjugated linoleic acid

Andreas Bernas, Narendra Kumar, Päivi Mäki-Arvela, Bjarne Holmbom, Tapio Salmi, Dmitry Yu Murzin*

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

27 Citeringar (Scopus)

Sammanfattning

Kinetic experiments in selective isomerization of technical grade (∼55%) linoleic acid to cis-9,trans-11-conjugated linoleic acid (B) and trans-10,cis-12-conjugated linoleic (E) acid isomers were performed batchwise at 165°C over two series of supported metal catalysts, i.e., hydrogen preactivated and nonpreactivated. Activated carbon- and aluminium oxide-supported Ru, Pd, Os, Ir, and Pt-Rh catalysts with 5 wt % metal loading were screened. Catalyst characterization was done by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), temperature-programmed desorption of hydrogen (H2-TPD), direct current plasma atomic emission spectrometry (DCP-AES), and nitrogen adsorption techniques. Over such catalysts, the reaction scheme involves six steps: (1) double bond migration of linoleic acid to conjugated linoleic acid, (2) positional and geometric isomerization of conjugated linoleic acid, (3) double bond hydrogenation of linoleic acid to monoenoic acids, (4) double bond hydrogenation of conjugated linoleic acid to monoenoic acids, (5) positional and geometric isomerization of monoenoic acids, and (6) double bond hydrogenation of monoenoic acids to stearic acid. Over Ru/C catalyst, chemisorbed hydrogen on the metal surface dramatically increased the linoleic acid isomerization rate in a diluted system as an astoichiometric component-enhancing double bond migration but decreased the isomerization rate by promoting deactivation in a solvent-free system. Over Ru/Al2O3 catalyst, on the other hand, dissociated hydrogen increased the isomerization rate for both the diluted and nondiluted systems. The effect of eliminating the solvent was an increase of the turnover frequency (TOF) at 165°C by a factor of 12 with respect to that shown in a diluted system. At the same conversion carbon-and aluminium oxide-supported Ru catalyst showed higher selectivity toward B and E than carbon-supported Pd, Os, Ir, and Pt-Rh catalysts.

OriginalspråkEngelska
Sidor (från-till)341-352
Antal sidor12
TidskriftOrganic Process Research and Development
Volym8
Utgåva3
DOI
StatusPublicerad - maj 2004
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Heterogeneous catalytic production of conjugated linoleic acid”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här