Finding an LFT uncertainty model with minimal uncertainty

    Forskningsoutput: Kapitel i bok/konferenshandlingPublicerad konferensartikelVetenskapligPeer review

    3 Citeringar (Scopus)
    30 Nedladdningar (Pure)

    Sammanfattning

    In this paper, we present a procedure for finding the best LFT uncertainty model by minimizing the H-infinity norm of the uncertainty set with respect to a nominal model subject to known input-output data. The main problem is how to express the data-matching constraints for convenient use in the optimization problem. For some uncertainty structures, they can readily be formulated as a set of linear matrix inequalities (LMIs), for some other structures, LMIs are obtained after certain transformations. There are also cases, when the constraints result in bilinear matrix inequalities (BMIs), which can be linearized to enable an efficient iterative solution. Essentially all LFT uncertainty structures are considered. An application to distillation modeling is included.

    OriginalspråkOdefinierat/okänt
    Titel på värdpublikation2013 European Control Conference (ECC)
    FörlagIEEE
    Sidor1107–1113
    ISBN (elektroniskt)978-3-033-03962-9
    ISBN (tryckt)978-3-9524173-4-8
    DOI
    StatusPublicerad - 2013
    MoE-publikationstypA4 Artikel i en konferenspublikation
    EvenemangEuropean Control Conference (ECC) - 2013 European Control Conference
    Varaktighet: 17 juli 201319 juli 2013

    Konferens

    KonferensEuropean Control Conference (ECC)
    Period17/07/1319/07/13

    Nyckelord

    • Data models
    • Linear matrix inequalities
    • Mathematical model
    • Optimization
    • Transfer functions
    • Uncertainty

    Citera det här