Exploring the Performance of Large Language Models for Data Analysis Tasks Through the CRISP-DM Framework

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This paper investigates the impact of Large Language Models (LLMs), specifically GPT, on data analysis tasks within the framework of CRISP-DM (Cross-Industry Standard Process for Data Mining). In order to assess the efficiency of text-to-code language models in data-related tasks, we systematically examine the performance of LLMs in the stages of the data mining process. GPT models are tested against a series of Python programming and SQL tasks derived from a Master’s program’s curriculum. The tasks focus on data exploration, visualization, preprocessing, and advanced analytical tasks like association rule mining and classification. The findings show that GPT models exhibit proficiency in Python programming across various CRISP-DM stages, particularly in Data Understanding, Preparation, and Modeling. They adeptly utilize Python libraries for data manipulation and visualization, demonstrating potential as effective tools in data science. However, the study also uncovers areas where the GPT Text-to-code model shows partial correctness, highlighting the need for human oversight in complex data analysis scenarios. This research contributes to understanding how AI can augment traditional data analysis methods, particularly under the CRISP-DM framework. It reveals the potential of LLMs in automating stages of data analysis, suggesting an acceleration in analytical processes and decision-making. The study provides valuable insights for organizations integrating AI into data analysis, balancing AI strengths with human expertise.
OriginalspråkEngelska
Titel på värdpublikationGood Practices and New Perspectives in Information Systems and Technologies - WorldCIST 2024
Undertitel på värdpublikationWorldCIST 2024, Volume 5
RedaktörerÁlvaro Rocha, Hojjat Adeli, Gintautas Dzemyda, Fernando Moreira, Aneta Poniszewska-Maranda
FörlagSpringer, Cham
Sidor56-65
Volym5
Utgåva1
ISBN (elektroniskt)978-3-031-60227-6
ISBN (tryckt)978-3-031-60226-9
DOI
StatusPublicerad - 16 maj 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangWorld Conference on Information Systems and Technologies - Lodz, Polen
Varaktighet: 26 mars 202428 mars 2024
Konferensnummer: 12

Publikationsserier

NamnLecture Notes in Networks and Systems
Volym989
ISSN (tryckt)2367-3370
ISSN (elektroniskt)2367-3389

Konferens

KonferensWorld Conference on Information Systems and Technologies
Förkortad titelWorldCIST'24
Land/TerritoriumPolen
OrtLodz
Period26/03/2428/03/24

Fingeravtryck

Fördjupa i forskningsämnen för ”Exploring the Performance of Large Language Models for Data Analysis Tasks Through the CRISP-DM Framework”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här