Projekt per år
Sammanfattning
Abstract Lignin-carbohydrate complexes (LCCs) present a unique opportunity for harnessing the synergy between lignin and carbohydrates for high-value product development. However, producing LCCs in high yields remains a significant challenge. In this study, we address this challenge with a novel approach for the targeted production of LCCs. We optimized the AquaSolv Omni (AqSO) biorefinery for the synthesis of LCCs with high carbohydrate content (up to 60/100?Ar) and high yields (up to 15?wt?%) by employing machine learning (ML). Our method significantly improves the yield of LCCs compared to conventional procedures, such as ball milling and enzymatic hydrolysis. The ML approach was pivotal in tuning the biorefinery to achieve the best performance with a limited number of experimental trials. Specifically, we utilized Bayesian Optimization to iteratively gather data and examine the effects of key processing conditions?temperature, process severity, and liquid-to-solid ratio?on yield and carbohydrate content. Through Pareto front analysis, we identified optimal trade-offs between LCC yield and carbohydrate content, discovering extensive regions of processing conditions that produce LCCs with yields of 8?15?wt?% and carbohydrate contents ranging from 10?40/100?Ar. To assess the potential of these LCCs for high-value applications, we measured their glass transition temperature (Tg), surface tension, and antioxidant activity. Notably, we found that LCCs with high carbohydrate content generally exhibit low Tg and surface tension. Our biorefinery concept, augmented by ML-guided optimization, represents a significant step toward scalable production of LCCs with tailored properties.
Originalspråk | Engelska |
---|---|
Artikelnummer | e202401711 |
Sidor (från-till) | e202401711 |
Tidskrift | ChemSusChem |
Volym | 18 |
Nummer | 8 |
Tidigt onlinedatum | 25 nov. 2024 |
DOI | |
Status | Publicerad - 14 apr. 2025 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Nyckelord
- Biorefinery
- Lignin
- Nuclear magnetic resonance (NMR)
- Artificial intelligence (AI)
- Lignin carbohydrate complexes (LCCs)
Fingeravtryck
Fördjupa i forskningsämnen för ”Enhancing Lignin-Carbohydrate Complexes Production and Properties With Machine Learning”. Tillsammans bildar de ett unikt fingeravtryck.Utrustning
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Fakulteten för naturvetenskaper och teknikUtrustning/facilitet: Facilitet
Projekt
- 1 Aktiv
-
AI-4-LCC: Exploiting Lignin-Carbohydrate Complex (LCC) through Artificial Intelligence
Xu, C. (Ansvarig forskare) & Alopaeus, M. (CoI)
01/09/21 → 31/08/25
Projekt: Finlands Akademi/Övriga Forskningsråd