Enhanced stability of organic field-effect transistor biosensors bearing electrosynthesized ZnO nanoparticles

RA Picca, K Manoli, A Luciano, MC Sportelli, G Palazzo, Luisa Torsi, N Cioffi

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

22 Citeringar (Scopus)

Sammanfattning

Herein electrosynthesized ZnO nanoparticles (ZnO NPs) agents to largely improve functional bio-interlayer organic field-effect transistor (FBI-OFET) biosensors stability are investigated. For a proof-of-principle, streptavidin (SA) was chosen as the capturing biomolecule to sense biotin and poly-3-hexylthiophene (P3HT) served as channel material. The ZnO NPs were prepared and integrated into the FBI-OFET architecture by means of a straightforward and versatile procedure. To this end, ZnO NPs were mixed with an SA solution and the resulting aqueous suspension was readily spin-coated onto the SiO2 gate dielectric. The P3HT film was spin-coated on the SA-ZnO NPs layer afterwards with the whole fabrication procedure taking no more than 30 min. The FBI-OFET biosensors bearing the ZnO NPs exhibited a shelf life exceeding one year, while the bare ones failed to work after few weeks. Moreover, the ZnO NPs enabled a two orders of magnitude increase in field-effect mobility while the already proven very good sensing performances were retained. The electrical and XPS characterization of the ZnO NPs based functional bio-interlayer provided information about the role of the nanostructured oxide on the improved device stability and a plausible mechanism for this occurrence is derived accordingly.
OriginalspråkOdefinierat/okänt
Sidor (från-till)210–217
Antal sidor8
TidskriftSensors and Actuators B: Chemical
Volym274
DOI
StatusPublicerad - 2018
MoE-publikationstypA1 Tidskriftsartikel-refererad

Nyckelord

  • Zinc oxide
  • Functional bio-interlayer
  • Field-effect transistor sensors
  • Extended lifetime
  • Poly-(3-hexylthiophene)

Citera det här