Emissions from large-scale medium-speed diesel engines: 3. Influence of direct water injection and common rail

Arto Sarvi, Pia Kilpinen, Ron Zevenhoven*

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

46 Citeringar (Scopus)

Sammanfattning

The influence of direct water injection (DWI) on emissions from a multivariable large-scale (6-18 cyl, ~ 1 MW/cyl) diesel engine is reported, using a combined injection valve and nozzle that allows for injection of water and fuel oil into the cylinder. This method allows for injecting a relatively large amount of water without derating the engine power and NOx emissions can be more than halved by DWI. Indeed DWI decreases combustion temperatures and NOx emissions, but it gives somewhat increased (yet not problematic) emissions of CO, HC, soot (smoke) and particulate matter (PM), depending on the water injection timing and degree of incomplete combustion. Common rail (CR) technology offers almost unlimited possibilities to control the fuel injection and to meet emission regulations. Different from a conventional injection system, the CR concept is based on the optimization of fuel pumping, injection timing, and injection rate. Optimum combustion is guaranteed by the CR engine map. For generator mode, CR resulted in clearly lower emissions of NOx, HC, CO and soot. Combining CR with DWI resulted in yet lower NOx (max. ca 50% reduction) and somewhat lower HC emissions but slightly higher CO and soot emissions.

OriginalspråkEngelska
Sidor (från-till)222-231
Antal sidor10
TidskriftFuel Processing Technology
Volym90
Nummer2
DOI
StatusPublicerad - feb. 2009
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Emissions from large-scale medium-speed diesel engines: 3. Influence of direct water injection and common rail”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här