Efficient Early Anomaly Detection of Network Security Attacks Using Deep Learning

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

1 Citeringar (Scopus)
83 Nedladdningar (Pure)

Sammanfattning

We present a deep-learning (DL) anomaly-based Intrusion Detection System (IDS) for networked systems, which is able to detect in realtime anomalous network traffic corresponding to security attacks while they are ongoing. Compared to similar approaches, our IDS does not require a fixed number of network packets to analyze in order to make a decision on the type of traffic and it utilizes a more compact neural network which improves its realtime performance. As shown in the experiments using the CICIDS2017 and USTC-TFC-2016 datasets, the approach is able to detect anomalous traffic with high precision and recall. In addition, the approach is able to classify the network traffic by using only a very small portion of the network flows.
OriginalspråkEngelska
Titel på värdpublikationProceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023
FörlagIEEE
Sidor154-159
ISBN (elektroniskt)9798350311709
ISBN (tryckt)979-8-3503-1171-6
DOI
StatusPublicerad - aug. 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangIEEE International Conference on Cyber Security and Resilience -
Varaktighet: 31 juli 2023 → …

Publikationsserier

NamnProceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023

Konferens

KonferensIEEE International Conference on Cyber Security and Resilience
Förkortad titelCSR
Period31/07/23 → …

Fingeravtryck

Fördjupa i forskningsämnen för ”Efficient Early Anomaly Detection of Network Security Attacks Using Deep Learning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här