Dimension bounds for invariant measures of bi-Lipschitz iterated function systems

Andreas Anckar

    Forskningsoutput: TidskriftsbidragArtikelPeer review

    Sammanfattning

    We study probabilistic iterated function systems (IFSs), consisting of a finite or infinite number of average-contracting bi-Lipschitz maps on Rd. If our strong open set condition is also satisfied, we show that both upper and lower bounds for the Hausdorff and packing dimensions of the invariant measure can be found. Both bounds take on the familiar form of ratio of entropy to the Lyapunov exponent. Proving these bounds in this setting requires methods which are quite different from the standard methods used for average-contracting IFSs.
    OriginalspråkOdefinierat/okänt
    Sidor (från-till)853–864
    TidskriftJournal of Mathematical Analysis and Applications
    Volym440
    Utgåva2
    DOI
    StatusPublicerad - 2016
    MoE-publikationstypA1 Tidskriftsartikel-refererad

    Nyckelord

    • Iterated function systems
    • Fractals
    • Hausdorff dimension
    • invariant measures

    Citera det här