Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland

Savela Henna, Lisa Spoof, Perälä Niina, Preede Mikko, Lamminmäki Urpo, Sonja Nybom, Kerstin Häggqvist, Jussi Meriluoto, Vehniäinen Markus

    Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

    30 Citeringar (Scopus)

    Sammanfattning

     

    Harmful cyanobacteria are a globally growing concern. They produce a large variety of toxic compounds, including saxitoxin and its many structural variants, a group of potent neurotoxins collectively called paralytic shellfish toxins or PST. Nucleic acid based detection methods, such as qPCR, have been proposed as potential screening and monitoring tools for toxic cyanobacteria, but it is not clear how well the presence and quantity of saxitoxin biosynthesis (sxt) genes can be used to predict the production of PST in the environment. In this study, the prevalence of three sxt genes and their co-occurrence with paralytic shellfish toxins in the environment was investigated. The sxtA, sxtG and sxtB genes were present on average in 31% of the samples collected from lakes and brackish coastal waters on A˚ land Islands, Finland, during the three-year monitoring period. PST detection frequency varied from 13% to 59% from year to year, and concentrations were generally low. On average higher sxtB copy numbers were associated with PST detection, and although a positive correlation between gene copy numbers and toxin concentrations was observed (Spearman rank correlation, r = 0.53, P = 0.012), sxt gene presence or quantity didn’t reliably predict PST production. Sequencing of sxtA fragments and identification of main cyanobacteria indicated that the likely candidate responsible for PST production in the samples belonged to the genus Anabaena. Harmful cyanobacteria are a globally growing concern. They produce a large variety of toxic compounds, including saxitoxin and its many structural variants, a group of potent neurotoxins collectively called paralytic shellfish toxins or PST. Nucleic acid based detection methods, such as qPCR, have been proposed as potential screening and monitoring tools for toxic cyanobacteria, but it is not clear how well the presence and quantity of saxitoxin biosynthesis (sxt) genes can be used to predict the production of PST in the environment. In this study, the prevalence of three sxt genes and their co-occurrence with paralytic shellfish toxins in the environment was investigated. The sxtA, sxtG and sxtB genes were present on average in 31% of the samples collected from lakes and brackish coastal waters on A˚ land Islands, Finland, during the three-year monitoring period. PST detection frequency varied from 13% to 59% from year to year, and concentrations were generally low. On average higher sxtB copy numbers were associated with PST detection, and although a positive correlation between gene copy numbers and toxin concentrations was observed (Spearman rank correlation, r = 0.53, P = 0.012), sxt gene presence or quantity didn’t reliably predict PST production. Sequencing of sxtA fragments and identification of main cyanobacteria indicated that the likely candidate responsible for PST production in the samples belonged to the genus Anabaena.

     

    OriginalspråkOdefinierat/okänt
    Sidor (från-till)1–10
    TidskriftHarmful Algae
    Volym46
    DOI
    StatusPublicerad - 2015
    MoE-publikationstypA1 Tidskriftsartikel-refererad

    Citera det här