Crouzeix's conjecture holds for a subclass of tridiagonal 3x3 matrices

Forskningsoutput: Bok/tidskrift/rapportBeställd rapportProfessionell

Sammanfattning

M. Crouzeix formulated the following conjecture in (Integral EquationsOperator Theory 48, 2004, 461--477): For every square matrix A and everypolynomial p,

∥p(A)∥≤2maxz∈W(A)|p(z)|, where W(A) is thenumerical range of A. We show that the conjecture holds for tridiagonal3×3 matrices ⎡⎣⎢ac0bac0ba⎤⎦⎥,a,b,c∈C, with constant diagonals, even if anynumber of off-diagonal elements should be set to zero. We also extend the mainresult of D. Choi in (Linear Algebra Appl. 438, 3247--3257) slightly.
OriginalspråkOdefinierat/okänt
FörlagarXiv.org
StatusPublicerad - 2017
MoE-publikationstypD4 Publicerad utvecklings- eller forskningsrapport eller studie

Citera det här